共检索到 2

The present study investigates the failure modes and formation mechanisms of shear surfaces in soil-rock mixtures from various perspectives. Firstly, through in-situ direct shear tests, two main shear failure modes, namely planar and non-planar, are identified. Subsequently, using PFC 2D numerical simulation, an in-depth exploration of the characteristics and causes of these two typical failure modes is conducted. The findings reveal that in the natural state, the material is relatively dry, and the matrix suction within the soil-rock mixture is significant. During shearing, the inter-particle force chains are prone to rupture, exhibiting characteristics akin to brittle failure. This leads to nearly planar shear surfaces, with force chain ruptures primarily localized near the planar regions adjacent to the shear surface. However, after multiple dry-wet cycles, the plastic enhancement of the soilrock mixture reduces the matrix suction to almost zero. The continuous rupture and reorganization of force chains deepen the shear band under their influence, resulting in non-planar shear surfaces. It is noteworthy that the characteristic point fitting curve of non-planar shear surfaces exhibits a nonlinear trend. In summary, our study elucidates the evolution process and causes of shear surface morphology in soil-rock mixtures, which holds significant implications for understanding their mechanical properties and engineering behavior.

期刊论文 2024-10-01 DOI: 10.1016/j.pce.2024.103659 ISSN: 1474-7065

The bearing capacity and settlements of surface foundations located on a soil slope are the important issues that have to be considered by geotechnical engineers for the design. The presence of an underground void beneath the footing can affect the foundation stability and can lead to serious structure damages. In this study, the results of two-dimensional (2D) discrete element (DE) and finite element (FE) analyses of a surface footing on a soil slope above a void are presented. To validate the numerical model results, the DE results obtained have been compared with experimental test presented in the previous study. After validation of the DE numerical model, parametric studies were carried out to evaluate the effect of important factors on the surface footing performance. The studied parameters include the horizontal spacing of the void axis relative to the slope edge (SH), the vertical spacing of the void crown relative to the footing base (SV), the horizontal spacing of the footing edge relative to the slope edge (De) and the void diameter (Dv). The effects of these parameters on the pressure-settlement curves and the contact force distributions in the soil slope are presented and discussed. The results showed that the footing bearing pressure increases with an increase of SH, SV and De but decreases when Dv increases. The behavior of a surface footing on a soil slope above a void significantly depends on the SV value.

期刊论文 2024-09-13 DOI: 10.1038/s41598-024-72220-6 ISSN: 2045-2322
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页