共检索到 2

Vascular wilt is an important tomato disease that affects culture yields worldwide, with Fusarium oxysporum (F.o) being the causal agent of this infection. Several management strategies have lost effectiveness due to the ability of this pathogen to persist in soil and its progress in vascular tissues. However, nowadays, research has focused on understanding the plant defense mechanisms to cope with plant diseases. One recent and promising approach is the use of extracellular DNA (eDNA) based on the ability of plants to detect their self-eDNA as damage-associated molecular patterns (DAMPs) and pathogens' (non-self) eDNA as pathogen-associated molecular patterns (PAMPs). The aim of this work was to evaluate the effect of the eDNA of F.o (as a DAMP for the fungus and a PAMP for tomato plants) applied on soil, and of tomato's eDNA (as a DAMP of tomato plants) sprayed onto tomato plants, to cope with the disease. Our results suggested that applications of the eDNA of F.o (500 ng/mu L) as a DAMP for this pathogen in soil offered an alternative for the management of the disease, displaying significantly lower disease severity levels in tomato, increasing the content of some phenylpropanoids, and positively regulating the expression of some defense genes. Thus, the eDNA of F.o applied in soil was shown to be an interesting strategy to be further evaluated as a new element within the integrated management of vascular wilt in tomato.

期刊论文 2024-11-01 DOI: 10.3390/plants13212999 ISSN: 2223-7747

Cortaderia selloana (Schult. & Schult. f.) Asch. & Graebn. (Pampas grass) is a perennial grass native to temperate and subtropical regions of South America. The species was introduced to western Europe for ornamental purposes during the nineteenth century, where it has become naturalized in anthropogenic and natural habitats, especially in sandy, open, and disturbed areas. Female plants of C. selloana produce thousands of seeds that are dispersed over long distances by wind and germinate readily. Its invasive success is also attributed to its ability to adapt and tolerate a wide range of environmental conditions, such as high salinity levels, long droughts, and soil chemical pollution. Cortaderia selloana usually invades human-disturbed habitats where it encounters little competition with other plants and high resource availability. However, the species can invade natural habitats, especially those with high light availability, causing biodiversity loss and changes in ecosystem functioning (e.g. alteration of succession and nutrient dynamics). The species may cause negative socio-economic impacts by reducing productivity of tree plantations, causing respiratory allergies, and decreasing the recreational value of invaded areas. Control costs are high due to the extensive root system that C. selloana develops and the high resprouting ability following physical damage. Although herbicides are effective control measures, their use is not allowed or is undesirable in all situations where the plant occurs (e.g. near riverbanks, natural protected sites). No biological control agents have been released on C. selloana to date, but the planthopper Sacchasydne subandina and the gall midge Spanolepis selloanae are promising targets.

期刊论文 2024-10-01 DOI: 10.1080/23818107.2024.2367591 ISSN: 2381-8107
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页