Conventional triaxial apparatus has limited capabilities for advanced testing of frozen soils, such as loading under controlled temperature and volume change measurements. To bridge this gap, in this paper, we presented a novel ultrasound-integrated double-wall triaxial cell designed specifically for stress and strain-controlled, as well as temperature-controlled testing of frozen soils. Monitoring pore ice content during triaxial tests in frozen soils poses a significant challenge. To overcome this hurdle, we developed an in-cell ultrasonic P wave measurement setup, which was integrated into the triaxial device to monitor freeze advancement at any stage of the test. We proposed a three-phase poromechanics-based approach to estimate the pore ice content of frozen soil samples based on the P-wave velocity. A series of creep tests under different freezing temperatures have been undertaken for frozen soil samples to investigate the effect of ice content and temperature on the volumetric deformations of frozen soils during creep tests. Our study demonstrates the potential of the proposed ultrasound-integrated double-wall triaxial apparatus for creep tests of frozen soils.
Loess in Northwest China is widely deposited atop the Hipparion Red Clay. Unlike red clay stratigraphy, loess is mostly seasonally frozen, with physical properties that change easily at low temperatures, increasing the risk of natural disasters like slope instability and landslides. To study the low-temperature properties of loess and red clay strata, loess-red clay composite samples with varying water contents were subjected to freezing at different low temperatures. Their resistivity and P-wave velocity were measured postfreezing. The results indicate that as water content increases, soil resistivity decreases due to enhanced electrical conduction, with a slower rate of decline. When the temperature decreases, resistivity rises gradually in the unfrozen stage (25 degrees C to - 5 degrees C) and increases rapidly in the frozen stage (-10 degrees C to - 20 degrees C) as water transitions to solid ice. At low water contents, soil resistivity is more sensitive to temperature changes due to reduced liquid conductive pathways. P-wave velocity decreases almost linearly with increasing water content in unfrozen soils, but this trend reverses in frozen soils. With decreasing temperature, P-wave velocity shows minimal change in unfrozen soils but increases significantly after freezing, with greater sensitivity to temperature changes at higher water contents. This experiment provides valuable data support for engineering construction, soil frost heave risk assessment, and geophysical investigations in permafrost regions.
Preexisting cracks inside tight sandstones are one of the most important properties for controlling the mechanical and seepage behaviors. During the cyclic loading process, the rock generally exhibits obvious memorability and irreversible plastic deformation, even in the linear elastic stage. The assessment of the evolution of preexisting cracks under hydrostatic pressure loading and unloading processes is helpful in understanding the mechanism of plastic deformation. In this study, ultrasonic measurements were conducted on two tight sandstone specimens with different bedding orientations subjected to hydrostatic loading and unloading processes. The P-wave velocity was characterized by a similar response with the volumetric strain to the hydrostatic pressure and showed different strain sensitivities at different loading and unloading stages. A numerical model based on the discrete element method (DEM) was proposed to quantitatively clarify the evolution of the crack distribution under different hydrostatic pressures. The numerical model was verified by comparing the evolution of the measured P-wave velocities on two anisotropic specimens. The irreversible plastic deformation that occurred during the hydrostatic unloading stage was mainly due to the permanent closure of plastic-controlled cracks. The closure and reopening of cracks with a small aspect ratio account for the major microstructure evolution during the hydrostatic loading and unloading processes. Such evolution of microcracks is highly dependent on the stress path. The anisotropy of the crack distribution plays an important role in the magnitude and strain sensitivity of the P-wave velocity under stress conditions. The study can provide insight into the microstructure evolution during cyclic loading and unloading processes. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Rock permeability, an important factor in subsurface fluid migration, can be influenced by microcracks and chemical weathering due to water-rock interactions. Understanding the relationship between permeability, chemical weathering, and microcracks is crucial for assessing fluid flow in rocks. This study focuses on the hydrogeological characteristics of granite and gneiss, potential host rocks for high-level radioactive waste disposal in South Korea. Samples were analyzed for permeability, porosity, P-wave velocity, and chemical weathering indices. Regression analysis revealed a weak correlation between permeability and both porosity and rock density, while an inverse correlation was observed between permeability and chemical weathering indices. Interestingly, some samples showed low permeability (10-21 to 10-22 m2) despite high weathering, while others showed high permeability (10-18 to 10-19 m2) despite low weathering. SEM-EDS analysis indicated the presence of microcracks within the rocks or the filling of these cracks with secondary minerals. The findings suggest that chemical weathering generally increases pore size and porosity, but actual permeability can vary depending on the presence and connectivity of microcracks and the extent to which they are filled with secondary minerals. Therefore, both chemical weathering and microcrack connectivity must be considered when evaluating the hydrogeological characteristics of crystalline rocks.