共检索到 2

Drought and salt stress are two major abiotic factors significantly impacting crop growth and yield. Climate change leads to increasing drought and soil salinization issues, rising significant challenges to agricultural production. Amylases play a crucial role in enhancing the tolerance of crops to these stresses by regulating physiological and enzymatic activities. Previous study identified MeAMY1 and MeBAM3 as key genes involved in cassava starch metabolism under drought stress. To investigate their functions under drought and salt stress, MeAMY1 and MeBAM3 genes were cloned and over-expressed in Arabidopsis thaliana in the current study. Overexpression of MeAMY1 in Arabidopsis enhances amylase activities, promotes starch hydrolysis, releases soluble sugar and thus enhances osmotic balance in transgenic Arabidopsis. In the mean while, expression of BAM1 and SEX1 were depressed by MeAMY1 to maintain the protects cells closed under stress and preserved starch for adapting the stressful environments. Overexpression of the MeBAM3 in Arabidopsis can increase the expression levels of AMY3 and RVE1, promotes starch hydrolysis, releases soluble sugar from the chloroplasts to the cytoplasm and thus enhances osmoregulatory substance content, reducing stress-induced damage to antioxidant enzymes and cell membranes and improving stress tolerance. The principal component analysis further indicated that MeAMY1 and MeBAM3 overexpression lines responded similarly to drought stress, while MeBAM3 overexpression provided greater resilience to salt stress.

期刊论文 2025-09-01 DOI: 10.1016/j.plaphy.2025.110058 ISSN: 0981-9428

Calcium-dependent protein kinase (CDPK) is an important mediator for Ca2 + signal recognition and transduction, playing a crucial role in plant stress response. Previous studies have shown that PcCDPK5 may be involved in the response of patchouli to p-hydroxybenzoic acid (p-HBA) stress. In this study, we further found that the subcellular localization of PcCDPK5 protein is in the cytoplasm, and its gene expression is closely related to continuous cropping (CC) and p-HBA stress. Under p-HBA stress, silencing the PcCDPK5 homologous gene in Nicotiana tabacum leads to decreased antioxidant enzyme activity and increased malondialdehyde (MDA) content, significantly accumulating reactive oxygen species (ROS) and affecting normal plant growth. On the contrary, overexpression of PcCDPK5 can effectively alleviate the damage caused by p-HBA stress to plant bodies. Through this research, the function of PcCDPK5 in response to p-HBA stress has been preliminarily analyzed, laying a theoretical foundation for alleviating CC obstacles in patchouli.

期刊论文 2025-02-01 DOI: 10.1016/j.ecoenv.2025.117807 ISSN: 0147-6513
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页