共检索到 3040

Bedrock-soil layer slopes (BSLSs) are widely distributed in nature. The existence of the interface between bedrock and soil layer (IBSL) affects the failure modes of the BSLSs, and the seismic action makes the failure modes more complex. In order to accurately evaluate the safety and its corresponding main failure modes of BSLSs under seismic action, a system reliability method combined with the upper bound limit analysis method and Monte Carlo simulation (MCS) is proposed. Four types of failure modes and their corresponding factors of safety (Fs) were calculated by MATLAB program coding and validated with case in existing literature. The results show that overburden layer soil's strength, the IBSL's strength and geometric characteristic, and seismic action have significant effects on BSLSs' system reliability, failure modes and failure ranges. In addition, as the cohesion of the inclination angle of the IBSL and the horizontal seismic action increase, the failure range of the BSLS gradually approaches the IBSL, which means that the damage range becomes larger. However, with the increase of overburden layer soil's friction angle, IBSL's depth and strength, and vertical seismic actions, the failure range gradually approaches the surface of the BSLS, which means that the failure range becomes smaller.

期刊论文 2025-12-31 DOI: 10.1080/19475705.2024.2442020 ISSN: 1947-5705

Conventional materials necessitate a layer-by-layer rolling or tamping process for subgrade backfill projects, which hampers their utility in confined spaces and environments where compaction is challenging. To address this issue, a self-compacting poured solidified mucky soil was prepared. To assess the suitability of this innovative material for subgrade, a suite of performance including flowability, bleeding rate, setting time, unconfined compressive strength (UCS), and deformation modulus were employed as evaluation criteria. The workability and mechanical properties of poured solidified mucky soil were compared. The durability and solidification mechanism were investigated. The results demonstrate that the 28-day UCS of poured solidified mucky soil with 20% curing agent content reaches 2.54 MPa. The increase of organic matter content is not conducive to the solidification process. When the curing temperature is 20 degrees C, the 28-day UCS of the poured solidified mucky soil with curing agent content not less than 12% is greater than 0.8 MPa. The three-dimensional network structure formed with calcium silicate hydrate, calcium aluminate hydrate, and ettringite is the main source of strength formation. The recommended mud moisture content is not exceed 85%, the curing agent content is 16%, and the curing temperature should not be lower than 20 degrees C.

期刊论文 2025-12-31 DOI: 10.1080/10298436.2025.2508345 ISSN: 1029-8436

On December 18, 2023, a magnitude MS6.2 earthquake struck Jishishan County, Gansu Province, triggering over 40 seismic subsidence sites within a seismic intensity VI zone, 32 km from the epicenter.The earthquake caused tens of millions in economic losses to mountain photovoltaic power stations. Extensive geological surveys and comparisons with similar landslides (such as soil loosening, widespread cracks, and stepped displacements) triggered by the 1920 Haiyuan MS8.5 earthquake and the 1995 Yongdeng MS5.8 earthquake, this study preliminarily identifies one subsidence sites as a seismic-collapsed loess landslide. To investigate its disaster-causing mechanism: the dynamic triaxial test was conducted to assess the seismic subsidence potential of the loess at the site, and the maximum subsidence amount under different seismic loads were calculated by combining actual data from nearby bedrock stations with site amplification data from the active source; simulation of the destabilization evolution of seismic-collapsed loess landslides by large-scale shaking table tests; and a three-dimensional slope model was developed using finite element method to study the complex seismic conditions responsible for site damage. The research findings provide a theoretical foundation for further investigations into the disaster mechanisms of seismic-collapsed loess landslides.

期刊论文 2025-12-31 DOI: 10.1080/19475705.2025.2457997 ISSN: 1947-5705

Taurine (TAU) has recently been found to have an impactful role in regulating plant responses under abiotic stresses. This study presented the comparative effects of TAU seed priming and foliar spray application on chickpea plants exposed to hexavalent chromium. Taurine priming and foliar applications (1.6 and 2.4 mM) notably modulated morpho-physiological and biochemical responses of plants under Cr(VI) stress. Plants subjected to 25 mg kg-1 soil Cr in the form of potassium dichromate (K2Cr2O7) displayed a significant reduction in growth, chlorophyll, and uptake of essential nutrients (N, K, P, and Ca). Cr(VI) toxicity also resulted in a notable increase in osmolyte accumulation, lipid peroxidation, relative membrane permeability, ROS generation, antioxidant enzyme activities, antioxidant compounds, endogenous Cr levels, and aerial Cr translocation. Taurine abridged lipoxygenase activity to diminish lipid peroxidation owing to the overproduction of ROS initiated by a higher Cr content. The acquisition and assimilation of essential nutrients were augmented by the TAU-related decrease in leaf and root Cr levels. Consequently, TAU enhanced growth by mitigating oxidative damage, reducing Cr content in the aerial parts, and reinforcing the activities of antioxidant enzymes. Compared to foliar spray, TAU seed priming has demonstrated superior efficacy in mitigating Cr phytotoxicity in plants.

期刊论文 2025-12-31 DOI: 10.1080/03650340.2025.2462042 ISSN: 0365-0340

An analytical methodology was developed for the first time in this work enabling the simultaneous enantiomeric separation of the fungicide fenpropidin and its acid metabolite by Capillary Electrophoresis. A dual cyclodextrin system consisting of 4 % (w/v) captisol with 10 mM methyl-beta-cyclodextrin was employed in a 100 mM sodium acetate buffer at pH 4.0. Optimal experimental conditions (temperature 25 degrees C, separation voltage -25 kV, and hydrodynamic injection of 50 mbar x 10 s) allowed the simultaneous separation of the four enantiomers in <10.7 min with resolutions of 3.1 (fenpropidin) and 3.2 (its acid metabolite). Analytical characteristics of the method were evaluated and found adequate for the quantification of both chiral compounds with a linearity range from 0.75 to 70 mg L-1, good accuracy (trueness included 100 % recovery, precision with RSD<6 %), and limits of detection and quantification of 0.25 and 0.75 mg L-1, respectively, for the four enantiomers. No significant differences were found between the concentrations determined and labelled of fenpropidin in a commercial agrochemical formulation. The stability over time (0-42 days) of fenpropidin enantiomers using the commercial agrochemical formulation was evaluated in two sugar beet soils, revealing to be stable at any time in one sample, while in the other a decrease of 45 % was observed after 42 days. Individual and combined toxicity of fenpropidin and its metabolite was determined for the first time for marine organism Vibrio fischeri, demonstrating higher damage caused by parent compound. Synergistics and antagonists' interactions were observed at low and high effects levels of contaminants.

期刊论文 2025-12-01 DOI: 10.1016/j.talanta.2025.128233 ISSN: 0039-9140

Correlations between the mechanical properties and surface scratch resistance of polylactic acid (PLA) are investigated via tensile and scratch tests on samples after degradation in soil for various times. The results show that the tensile yield strength of PLA is inversely proportional to the natural logarithm of the degradation time, and the scratch resistance and fracture toughness of PLA and the temperature rise near the indenter all increase and then decrease. The surface crystallinity of PLA also increases and then decreases, indicating that it and the scratch resistance are closely related. These findings provide useful information about how PLA behaves under degradation conditions. (c) 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).

期刊论文 2025-12-01 DOI: 10.1063/5.0252651 ISSN: 1672-6030

To investigate the effect of interface temperature on the soil-reinforcement interaction mechanism, a series of pullout tests were conducted considering different types of reinforcement (geogrid and non-woven geotextile), backfill (dry sand, wet sand, and clay), and six interface temperatures. The test results indicate that at interface temperatures of 0 degrees C and above, reinforcement failure didn't occur during the pullout tests, whereas it predominantly occurred at subzero temperatures. Besides, the pullout resistance for the same soil-reinforcement interface gradually decreased as the interface temperature rose. At a given positive interface temperature, the pullout resistance between wet sand and reinforcement was significantly higher than that of the clayreinforcement interface but lower than that of the dry sand-reinforcement interface. Compared with geotextile reinforcements, geogrids were more difficult to pull out under the same interface temperature and backfill conditions. In addition, the lag effect in the transfer of tensile forces within the reinforcements was significantly influenced by the type of soil-reinforcement interface and the interface temperature. Finally, the progressive deformation mechanism along the reinforcement length at different interface temperatures was analyzed based on the strain distribution in the reinforcement.

期刊论文 2025-12-01 DOI: 10.1016/j.geotexmem.2025.06.002 ISSN: 0266-1144

The soil strength of soft clay is influenced by strain rate effect. Models considering strain rate effect always ignore the impact of loading rate on pore pressure and have poor applicability to 3D engineering problems. Based on the classic inelastic core boundary surface model, a logarithmic rate function representing the strain rate effect of soft soil was introduced to the hardening law. A new parameter H was added to adjust the plastic modulus while another new parameter mu is introduced to account for the strain rate effect. A rate-effect boundary surface constitutive model suitable for saturated clay was subsequently proposed. Combined with the implicit integral numerical algorithm and stress-permeability coupling analysis, the innovative model was implemented in the finite element software and validated by comparing with the results of triaxial tests. By analysing the rate-effect of 11 types of soft soil, a formula to calculate the rate parameter was derived. The developed model was used to calculate the undrained vertical bearing capacity and sliding resistance of a movable subsea mudmat. The mudmat frictional coefficient from soil undrained to partial drained and finally undrained state was obtained and compared with those from the Modified Cam-Clay model. Identical results were obtained without considering the rate effect. When considering the strain rate effect on the improvement of soil strength, the friction resistance coefficient initially decreases and then increases with the decrease of the sliding speed, eventually stabilising after reaching the limit value. The rate-effect on the friction resistance coefficient is most prominent under undrained conditions with high sliding speeds. The soil strain rate effect is suggested to be considered in the design of the subsea mudmat avoid underestimating the friction resistance.

期刊论文 2025-11-01 DOI: 10.1016/j.soildyn.2025.109564 ISSN: 0267-7261

In this study, the effect of near-field and far-field ground motions on the seismic response of the soil pile system is investigated. The forward directivity effect, which includes a large velocity pulse at the beginning of the velocity time history of the ground motion is the most damaging phenomenon observed in near-field ground motions. To investigate the effect of near-field and far-field ground motions on the seismic response of a soil-pile system, a three-dimensional model consisting of the two-layer soil, liquefiable sand layer over dense sand, and the pile is utilized. Modeling is conducted in FLAC 3D software. The P2P Sand constitutive model is selected for sandy soil. Three fault-normal near-field and three far-field ground motion records were applied to the model. The numerical results show that near field velocity pulses have a considerable effect on the system behavior and sudden huge displacement demands were observed. Also, during the near-field ground motions, the exceeded pore water pressure coefficient (Ru) increases so that liquefaction occurs in the upper loose sand layer. Due to the pulse-like ground motions, a pulse-like relative displacement is created in response to the pile. Meanwhile the relative displacement response of the pile is entirely different due to the energy distribution during the far-field ground motions.

期刊论文 2025-11-01 DOI: 10.5829/ije.2025.38.11b.21 ISSN: 1025-2495

Thawing-triggered slope failures and landslides are becoming an increasing concern in cold regions due to the ongoing climate change. Predicting and understanding the behaviour of frozen soils under these changing conditions is therefore critical and has led to a growing interest in the research community. To address this challenge, we present the first mesh-free smoothed particle hydrodynamics (SPH) computational framework designed to handle the multi-phase and multi-physic coupled thermo-hydro-mechanical (THM) process in frozen soils, namely the THM-SPH computational framework. The frozen soil is considered a tri-phase mixture (i.e., soil, water and ice), whose governing equations are then established based on u-p-T formulations. A critical-state elasto-plastic Clay and Sand Model for Frozen soils (CASM-F), formulated in terms of solid-phase stress, is then introduced to describe the transition response and large deformation behaviour of frozen soils due to thawing action for the first time. Several numerical verifications and demonstrations highlight the usefulness of this advanced THM-SPH computational framework in addressing challenging problems involving thawing-induced large deformation and failures of slopes. The results indicate that our proposed single-layer, fully coupled THM-SPH model can predict the entire failure process of thawing-induced landslides, from the initiation to post-failure responses, capturing the complex interaction among multiple coupled phases. This represents a significant advancement in the numerical modelling of frozen soils and their thawing-induced failure mechanisms in cold regions.

期刊论文 2025-11-01 DOI: 10.1016/j.cma.2025.118252 ISSN: 0045-7825
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共3040条,304页