This study investigates aerosol characteristics using ground-based measurements at two distinct regions, MohalKullu (31.9 degrees N, 77.12 degrees E; 1154 m amsl) and Kosi-Katarmal (29.64 degrees N, 79.62 degrees E; 1225 m amsl), from July 2019 to June 2022. The average Black Carbon (BC) concentrations were 1.5 f 1.0 mu g m- 3 at Mohal and 1.1 f 1.4 mu g m-3 at Katarmal. BC showed strong seasonal variability, with maxima during post-monsoon (2.6 f 1.0 mu g m- 3) and pre-monsoon (1.8 f 0.5 mu g m-3) seasons. The diurnal variation displayed distinct morning and evening peaks in all the seasons. High pre-monsoon AOD500 (0.30 f 0.06 to 0.54 f 0.08) and low values of & Aring;ngstrom exponent (0.67 f 0.10 to 0.95 f 0.30) indicated dominance of large particles, whereas lower AOD500 (0.21 f 0.07 to 0.25 f 0.03) in post-monsoon and winter, along with larger & Aring;ngstrom exponent (1.05 f 0.74 to 1.13 f 0.11), indicated smaller particles. Satellite-derived (OMI and MAIAC) AOD500 showed weak to moderate correlation with ground-based measurements at Mohal (R = 0.4639 for MAIAC, R = 0.1402 for OMI) and Katarmal (R = 0.3976 for MAIAC, R = 0.2980 for OMI). Using optical properties of aerosols and clouds (OPAC) and Santa Barbara discrete ordinate radiative transfer (SBDART) models, the short-wave aerosol radiative forcing (SWARF) was found negative at the surface and top of the atmosphere but positive in the atmosphere, suggesting significant surface cooling and atmospheric warming leading to high heating rates, respectively. Annual mean atmospheric radiative forcing was 27.36 f 6.00 Wm- 2 at Mohal and 21.87 f 7.26 Wm- 2 at Katarmal. These findings may have consequences for planning air pollution strategies and understanding the effects of regional climate change.
Aerosols are an important factor leading to reduced visibility. In order to better comprehend the connection between visibility and aerosols, aerosol optical depth (AOD) and Angstrom exponent (AE) data from the Himawari-8 Advanced Himawari Imager (AHI) are used for validation in comparison with the data from the Aerosol Robotic Network (AERONET) observations in this paper, which amounted to 69,026 sets of data. The results indicate that the AOD of AHI is in good agreement with AERONET observations, but AE performs poorly. The correlation coefficients between the AOD of AHI and AERONET data increase with decreasing visibility and the root mean square error increase. The AE of AHI performs poorly in different visibility conditions. The conclusion drawn from further analysis of the correlation between aerosol products and meteorological factors is that the factor with the highest correlation with visibility. Mixed aerosols dominate at higher visibility and biomass burning/urban-industrial aerosols dominate at lower visibility. The visibility in a typical city (Beijing) has a strong negative correlation with AOD, a weak negative correlation with AE, and a strong correlation with aerosol radiative forcing. The reduction in visibility may be caused by the scattering and adsorption effects of aerosols. The results are important for the improvement and application of AHI aerosol products in regional pollution studies.
Particulate matter (PM) is a vital pollutant that severely impacts human health, ecosystem well-being, and climate systems. In this review, the importance of vertical profiling is considered for understanding PM behavior between different layers of the atmosphere, and it includes modern techniques used such as meteorological towers and building methods, unmanned aerial vehicles (UAVs), aircraft, and satellite-based aerosol optical depth measurements. A systematic review was conducted, sourcing 150 articles published between 2000 and 2023, using relevant keywords such as Particulate Matter, Vertical Profiling, Environmental Impacts, and Climate Change from databases like Web of Science, Scopus, and Google Scholar. Key findings illustrate the vertical variations in PM levels associated with interactions among urban environments, meteorology, and specific atmospheric processes such as cloud formation, radiative forcing, and long-distance transport of pollutants. PM's effects on biodiversity, nutrient cycles, and ecosystem stability are also discussed. The environmental impacts of PM deposition, including biodiversity loss, nutrient cycling disruption, and ecosystem destabilization, elucidate widespread chronic anthropogenic particulate causes of long-term ecological damage around the globe. The study also examines relevant regulatory frameworks, specifically air quality standards, and policies, underpinning mitigation strategies. This review discusses how PM pollution is an increasingly alarming health risk. It reiterates the importance of demanding effective regulations on the local and global levels to counteract detrimental environmental and climatic consequences. This review clearly shows the immediate threats of PM. It should form a wake-up call to develop more effective monitoring tools and stringent regulatory measures against this omnipresent pollutant.
In South Asia, our understanding of atmospheric aerosols and their optical properties is limited, posing a challenge to comprehending climate change dynamics. This study characterises aerosol optical properties, radiative properties, black carbon (BC) and ozone (O3) at seven South Asian locations, including Nam Co (Tibetan Plateau, TP), Dhaka, Bhola (Bangladesh), and Hanimaadhoo, Kashidhoo, Male' and Gan (Maldives). The study utilises columnar aerosol data from the Aerosol Robotic Network (AERONET) and reanalysis data from Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) from 2001 to 2020. Notably, during the winter, the highest Aerosol optical depth (AOD) levels were observed in Dhaka (1.0 +/- 0.5) and Bhola (0.8 +/- 0.4) among these seven locations. BC concentrations in Dhaka ranged from 2.1 to 2.8 mu g m-3, while Bhola recorded concentrations between 1.4 and 2.1 mu g m-3. O3 levels across Maldives sites remained consistent, with values ranging between 314 and 345 dobson units (DU), surpassing those in Bangladesh and TP. The analysis shows a significant difference in the rate at which the atmosphere heats (HR) up due to aerosols. Higher heating rates were observed over Kashidhoo during the post-monsoon and winter seasons, while lower values were seen during the pre-monsoon and monsoon seasons, compared with Hanimaadhoo and Male'. It is important to note that Bangladesh had higher HR values than the Maldives. This study helps us better understand the impact of atmospheric aerosols on South Asia's climate and the different seasonal patterns.
In this study, we used satellite observations to identify 10 typical dust-loading events over the Indian Himalayas. Next, the aerosol microphysical and optical properties during these identified dust storms are characterized using cotemporal in situ measurements over Mukteshwar, a representative site in Indian Himalayas. Relative to the background values, the mass of coarse particles (size range between 2.5 and 10 mu m) and the extinction coefficient were found to be enhanced by 400% (from 24 +/- 15 to 98 +/- 40 mu g/m3) and 175% (from 89 +/- 57 Mm-1 to 156 +/- 79 Mm-1), respectively, during these premonsoonal dust-loading events. Moreover, based on the air mass trajectory, these dust storms can be categorized into two categories: (a) mineral dust events (MDEs), which involve long-range transported dust plumes traversing through the lower troposphere to reach the Himalayas and (b) polluted dust events (PDEs), which involve short-range transported dust plumes originating from the arid western regions of the Indian subcontinent and traveling within the heavily polluted boundary layer of the Gangetic plains before reaching the Himalayas. Interestingly, compared to the background, the SSA and AAE decrease during PDEs but increase during MDEs. More importantly, we observe a twofold increase in black carbon concentrations and the aerosol absorption coefficient (relative to the background values) during the PDEs with negligible changes during MDEs. Consequently, the aerosol-induced snow albedo reduction (SAR) also doubles during MDEs and PDEs relative to background conditions. Thus, our findings provide robust observational evidence of substantial dust-induced snow and glacier melting over the Himalayas.
From the beginning of May 2023 to the end of August 2023, the Northern Hemisphere experienced significant wildfire activity with the most widespread fires occurring in Canada. Forest fires in Canada destroyed more than 15.6 million hectares of forests. These wildfires worsened air quality across the region and other parts of the world. The smoke reached southern Europe by the end of June 2023. To better understand the consequences of such forest fires far from the site of origin, aerosol optical, microphysical and radiative properties were analyzed during this event for southern Europe using data from the Visible Infrared Imaging Radiometer Suite (VIIRS), TROPOspheric Monitoring Instrument (TROPOMI), and Aerosol Robotic Network (AERONET). TROPOMI aerosol index (AI) and the carbon monoxide (CO) product confirm that the smoke originated directly from these forest fires. AERONET data from the El Arenosillo site in southern Spain showed maximum aerosol optical depth (AOD) values on June 27 reached 2.36. Data on Angstrom Exponent (AE), aerosol volume size distribution (VSD), single scattering albedo (SSA), fine mode fraction (FMF), volume particle concentration, effective radius (R Eff ), absorption AOD (AAOD), extinction AE (EAE) and absorption AE (AAE) showed that fine-mode particles with carbonaceous aerosols contribution predominated in the atmosphere above the El Arenosillo site. Direct aerosol radiative forcing (DARF) at the top (DARF TOA ) and bottom of atmosphere (DARF BOA ) were-103.1 and-198.93 Wm-2 , respectively. The atmospheric aerosol radiative forcing (DARF ATM ) was found to be 95.83 Wm-2 and with a heating rate 2.69 K day-1 , which indicates the resulting warming of the atmosphere.
Aerosols affect Earth's climate both directly and indirectly, which is the largest uncertainty in the assessment of radiative forcings affecting anthropogenic climate change. The standard Aerosol Robotic Network (AERONET) aerosol products have been widely used for more than 30 years. Currently, there is strong community interest in the possibility of determining aerosol composition directly from remote sensing observations. This work presents the results of applying such a recently developed approach by Li et al. to extended datasets of the directional sky radiances and spectral aerosol optical depth (AOD) measured by AERONET for the retrievals of aerosol components. First, the validation of aerosol optical properties retrieved by this component approach with AERONET standard products shows good agreement. Then, spatiotemporal variations of the obtained aerosol component concentration are characterized globally, especially the absorbing aerosol species (black carbon, brown carbon, and iron oxides) and scattering aerosol species (organic carbon, quartz, and inorganic salts). Finally, we compared the black carbon (BC) and dust column concentration retrievals to the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), products in several regions of interest (Amazon zone, Desert, and Taklamakan Desert) for new insights on the quantitative assessment of MERRA-2 aerosol composition products (R = 0.60-0.85 for BC; R = 0.75-0.90 for dust). The new value-added and long-term aerosol composition product globally is available online (https://doi.org/10.6084/ m9.figshare.25415239.v1), which provides important measurements for the improvement and optimization of aerosol modeling to enhance estimation of the aerosol radiative forcing. SIGNIFICANCE STATEMENT: In the assessment of climate change, the uncertainty associated with aerosol radiative forcing is the largest one. The purpose of this study is to provide a new value-added and long-term aerosol composition (including absorbing and scattering aerosol species) inversion dataset derived from Aerosol Robotic Network (AERONET) measurements for characterizing their spatiotemporal variations at global scale. We find some new insights on the quantitative assessment of black carbon and dust column concentration products in the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Our results and aerosol composition inversion dataset will provide robust support for the overall improvement and optimization of aerosol modeling to better understand the aerosol radiative forcing.
In this study, we investigated the aerosol radiative forcing (ARF) using ground-based measurements of PM2.5 and black carbon aerosols at a semi-arid, rain shadow location, Solapur in peninsular India. It is observed that aerosols caused a net cooling effect at top of the atmosphere (TOP) indicating that the aerosols reflect more solar radiation back to space than they absorb. At the surface, the aerosols caused a net cooling effect indicating more presence of scattering type aerosols. The resulting ARF of the aerosols was found to be ranging from +38 Wm-2 in monsoon to +53 Wm-2 in pre-monsoon indicating trapping of energy which resulted in a warming of the atmosphere. However, BC -only forcing indicated a significant warming effect at TOP as well as in the atmosphere which showed the potential of the absorbing carbonaceous aerosols. Overall, BC was responsible for 44% and 32% of the composite ARF, even though it formed only 7% and 2% of composite aerosol in the dry and wet periods, respectively. The warming impact of BC aerosols was also manifested in terms of their contribution to aerosol radiative forcing efficiency (ARFE) which was about four times more for BC-only than that for composite aerosols. More atmospheric heating rates were observed during dry periods for composite and BC-only aerosols than during wet period. These findings have important implications for aerosol-cloud-precipitation studies as well as the atmospheric thermodynamics and hydrological cycle over this semi-arid region where the total aerosol load is not significant and rainfall amount is scarce.
A comprehensive global investigation on the impact of reduction (changes) in aerosol emissions due to Coronavirus disease-2019 (COVID-19) lockdowns on aerosol single scattering albedo (SSA) utilizing satellite observations and model simulations is conducted for the first time. The absolute change in Ozone Monitoring Instrument (OMI) retrieved, and two highly-spatially resolved models (Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA-2) and Copernicus Atmosphere Monitoring Service (CAMS)) simulated SSA is <4% (<0.04-0.05) globally during COVID (2020) compared to normal (2015-2019) period. Change in SSA during COVID is not significantly different from long-term and year-to-year variability in SSA. A small change in SSA indicates that significant reduction in anthropogenic aerosol emissions during COVID-19 induced lockdowns has a negligible effect in changing the net contribution of aerosol scattering and/or absorption to total aerosol extinction. The changes in species-wise aerosol optical depth (AOD) are examined in detail to explain the observed changes in SSA. Model simulations show that total AOD decreased during COVID-19 lockdowns, consistent with satellite observations. The respective contributions of sulfate and black carbon (BC) to total AOD increased, which resulted in a negligible change in SSA during the spring and summer seasons of COVID over South Asia. Europe and North America experience a small increase in SSA (<2%) during the summer season of COVID due to a decrease in BC contribution. The change in SSA (2%) is the same for a small change in BC AOD contribution (3%), and for a significant change in sulfate AOD contribution (20%) to total AOD. Since, BC SSA is 5-times lower (higher absorption) than that of sulfate SSA, the change in SSA remains the same. For a significant change in SSA to occur, the BC AOD contribution needs to be changed significantly (4-5 times) compared to other aerosol species. A sensitivity analysis reveals that change in aerosol radiative forcing during COVID is primarily dependent on change in AOD rather than SSA. These quantitative findings can be useful to devise more suitable future global and regional mitigation strategies aimed at regulating aerosol emissions to reduce environmental impacts, air pollution, and public health risks.
It is increasingly recognized that light-absorbing impurities (LAI) deposited on snow and ice affect their albedo and facilitate melting processes leading to various feedback loops, such as the ice albedo feedback mechanism. Black carbon (BC) is often considered the most important LAI, but some areas can be more impacted by high dust emissions. Iceland is one of the most important high latitude sources for the Arctic due to high emissions and the volcanic nature of the dust. We studied optical properties of volcanic dust from Iceland and Chile to understand how it interacts with the Sun's radiation and affects areas of deposition as LAI. Optical properties of dust samples were measured at the laboratory of the Finnish Geospatial Research Institute (FGI) using the latest setup of the FGI's goniospectrometer. We found that, depending on the particle size, the albedo of dry volcanic dust on the visible spectrum is as low as 0.03, similar to that of BC, and the albedo decreases with increasing particle size. Wet dust reduces its albedo by 66% compared to dry sample. This supports the comparability of their albedo reducing effects to BC as LAIs, and highlights their significant role in albedo reduction of snow and ice areas. The potential use of the results from our measurements is diverse, including their use as a ground truth reference for Earth Observation and remote sensing studies, estimating climate change over time, as well as measuring other ecological effects caused by changes in atmospheric composition or land cover.