共检索到 2

The Smoothed Particle Finite Element Method (SPFEM) has gained popularity as an effective numerical method for modelling geotechnical problems involving large deformations. To promote the research and application of SPFEM in geotechnical engineering, we present ESPFEM2D, an open-source two-dimensional SPFEM solver developed using MATLAB. ESPFEM2D discretizes the problem domain into computable particle clouds and generates the finite element mesh using Delaunay triangulation and the alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document}-shape technique to resolve mesh distortion issues. Additionally, it incorporates a nodal integration technique based on strain smoothing, effectively eliminating defects associated with the state variable mapping after remeshing. Furthermore, the solver adopts a simple yet robust approach to prevent the rank-deficiency problem due to under-integration by using only nodes as integration points. The Drucker-Prager model is adopted to describe the soil's constitutive behavior as a demonstration. Implemented in MATLAB, this open-source solver ensures easy accessibility and readability for researchers interested in utilizing SPFEM. ESPFEM2D can be easily extended and effectively coupled with other existing codes, enabling its application to simulate a wide range of large geomechanical deformation problems. Through rigorous validation using four numerical examples, namely the oscillation of an elastic cantilever beam, non-cohesive soil collapse, cohesive soil collapse, and slope stability analysis, the accuracy, effectiveness and stability of this open-source solver have been thoroughly confirmed.

期刊论文 2024-08-01 DOI: 10.1007/s00466-024-02441-z ISSN: 0178-7675

Permafrost is a widespread phenomenon in the cold regions of the globe and is under-represented in global monitoring networks. This study presents a novel low-cost, low-power, and robust Autonomous Electrical Resistivity Tomography (A-ERT) monitoring system and open-source processing tools for permafrost monitoring. The processing workflow incorporates diagnostic and filtering tools and utilizes open-source software, ResIPy, for data inversion. The workflow facilitates quick and efficient extraction of key information from large data sets. Field experiments conducted in Antarctica demonstrated the system's capability to operate in harsh and remote environments and provided high-temporal-resolution imaging of ground freezing and thawing dynamics. This data set and processing workflow allow for a detailed investigation of how meteorological conditions impact subsurface processes. The A-ERT setup can complement existing monitoring networks on permafrost and is suitable for continuous monitoring in polar and mountainous regions, contributing to cryosphere research and gaining deeper insights into permafrost and active layer dynamics. Permafrost, frozen ground in cold regions, has significant impacts on the global environment. Monitoring of permafrost is crucial because it influences the global carbon cycle, hydrology, contaminant movement, and ecosystem stability. However, current monitoring systems have limitations, particularly in remote regions like Antarctica. To tackle this challenge, a new monitoring system, Autonomous Electrical Resistivity Tomography (A-ERT), was introduced. A-ERT is a geophysical technique that employs electrical signals to study ground freezes and thaws with high precision over time. Alongside this, open-source processing tools were developed to process obtained A-ERT data and efficiently extract essential information from large data sets. The developed A-ERT system is robust, low-cost, low-power, and designed to operate in harsh conditions. Tested in Antarctica, our findings show that A-ERT data combined with processing pipelines offers a valuable tool for examining freezing and thawing processes in extreme environments. The proposed setup can contribute to a network of autonomous permafrost monitoring systems, important for cryosphere research and advancing our understanding of climate change's impact on permafrost dynamics. We present a robust low-cost Autonomous Electrical Resistivity Tomography system for permafrost monitoring in polar and mountainous regions We introduce an open-source tool for processing and inverting large data sets, enabling quick and efficient extraction of key information Field experiments conducted in Antarctica show high-temporal-resolution imaging of ground freezing and thawing dynamics

期刊论文 2024-03-28 DOI: 10.1029/2023GL105770 ISSN: 0094-8276
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页