共检索到 2

Bridges are important social infrastructure, and in particular, the stability of the back-fill behind the abutment determines the safety of the entire bridge. Recent climate change has increased the risk of flooding, and damage caused by back-fill erosion and collapse is increasing. The objective of this study is to elucidate the damage mechanism of the back-fill of bridge abutments during floods and to propose new reinforcement techniques. In the experiments, indoor open channel tests using a scaled model were conducted to verify the effectiveness of the Gabion Faced Reinforced Soil Wall (GRW), which is a reinforcement method integrating gabions and geosynthetics to reduce the collapse of the back-fill due to flooding. The result of the study showed that the GRW was effective in preventing the collapse of the back-fill due to flooding. As a result, the time until complete collapse of the back-fill was three times longer in the case where GRW was installed than in the case where no countermeasures were taken. This suggests that GRW may be effective during flood events. However, boiling due to changes in pore water pressure occurred inside the back-fill, resulting in progressive sediment discharge. In particular, the effect of the gabion installation geometry was observed, confirming that the corner design is important to control scour. This study experimentally verified the effectiveness of the reinforced soil wall and provided knowledge that contributes to improving the durability of abutment back-fill during flooding. In the future, quantitative evaluation will be conducted to establish a more practical design method.

期刊论文 2025-06-01 DOI: 10.1007/s40515-025-00615-7 ISSN: 2196-7202

On March 11, 2011, the Great East Japan Earthquake triggered tsunamis that reached extensive areas along Japan's Pacific coast. There have been instances where embankments built on plains for expressways mitigated the impact of tsunami damage. In the vicinity of the Sendai-tobu highway, the presence of an embankment approximately 10 m high altered the course of the advancing tsunami, thereby preventing flooding. Establishing a multiplied defense system using road embankments necessitates understanding the deformation and collapse mechanisms of road embankments impacted by tsunamis following seismic motion. In this study, overtopping experiments were conducted by first applying seismic motion to model embankments, followed by introducing the first wave of breaking bores, and then simulating prolonged overtopping by the tsunami. The experimental findings indicated that within the embankments impacted by the tsunami, there was an immediate increase in what is presumed to be pore air pressure following the arrival of the breaking bores, followed by a rise in pore water pressure during subsequent overtopping. Moreover, embankments subjected to seismic motion exhibited accelerated erosion following the overtopping. These results imply that when embankments settle due to an earthquake, leading to relatively higher anticipated inundation depths and the potential for overtopping, it is crucial to implement measures to prevent the settlement of the crest for embankments expected to serve as part of a multiplied defense system.

期刊论文 2024-10-01 DOI: 10.1007/s40515-024-00404-8 ISSN: 2196-7202
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页