The Tibetan Plateau (TP), often referred to as the 'Asian Water Tower', plays a critical role in regulating the hydrological cycle and influencing global climate patterns. Its unique topography and climatic conditions result in pronounced seasonal freeze-thaw (FT) dynamics of the land surface, which are critical for understanding permafrost ecosystem responses to climate change. However, existing studies on FT dynamics over the TP are limited by either short observational periods or deficiency in accuracy, failing to capture the long-term FT processes comprehensively. This study presents a novel satellite-based approach for monitoring the FT dynamics over the TP from 1979 to 2022, utilizing passive microwave observations. We developed a new algorithm that integrates discriminant function algorithm (DFA) with a seasonal threshold algorithm (STA), employing the freeze-thaw index (FTI) as the classification variable to determine optimal FT thresholds. The strong performance of the algorithm was confirmed by in-situ validation, with an overall accuracy of 91.46%, a Kappa coefficient of 0.83, and an F1-score of 0.92, outperforming other remote sensing-derived FT products such as SMAP (OA = 89.44%, Kappa = 0.79, F1 = 0.89). Results reveal significant changes in surface freeze-thaw dynamics over the past four decades. Between 1988-2022, frozen days exhibited a significant decreasing trend of -0.19 daysyear(-)(1), primarily attributed to the delayed freeze onset (0.19 daysyear(-)(1)), while thaw onset showed no significant trend. Spatially, permafrost regions experienced a more pronounced decrease in frozen days and earlier thaw onset compared to seasonally frozen regions. Moreover, marked interannual trend differences in FT processes were observed across elevation gradients, with higher elevations showing more negative trends in frozen days and thaw onset. This study provides a reliable and up-to-date analysis of surface FT process changes over the TP, informed by long-term satellite-based observational perspectives. These analyses revealed marked spatial heterogeneity in surface FT dynamics across the TP region, underscoring the impacts of climate change on the cryosphere and hydrology.
Rapid climate change in the Northern Hemisphere cryosphere threatens ancient permafrost carbon. Once thawed, permafrost carbon may migrate to surface waters. However, the magnitude of permafrost carbon processed by northern freshwater remains uncertain. Here, we compiled '1800 radiocarbon data of aquatic dissolved organic carbon (DOC) and particulate organic carbon (POC) in the Arctic and Qinghai -Tibet Plateau (QTP) to explore the fate of permafrost carbon under climate warming over the past 30 years. We showed that the contribution of aged carbon has significantly increased since 2015. Approximately 70 % of DOC and POC was derived from aged carbon for QTP rivers. In Arctic waters, an average of '67 % of POC was derived from aged carbon, however, '75 % of DOC was derived from modern carbon, mainly due to low temperatures and protection by vegetation limiting the export of aged DOC. For both regions, DOC 14 C age was positively correlated with the active layer thickness, whereas the POC 14 C age was positively correlated with the mean annual ground temperature, suggesting that gradual thaw accelerated the mobilization of aged DOC while abrupt thaw facilitated the export of aged POC. Furthermore, POC 14 C age was positively correlated with the soil organic carbon density, which was attributed to well-developed pore networks facilitated aged carbon output. This study suggests that permafrost carbon release is affected by both permafrost thermal properties and soil organic carbon density, which should be considered in evaluation of permafrost carbon -climate feedback.
Large-scale wildfires are essential sources of black carbon (BC) and brown carbon (BrC), affecting aerosol-induced radiative forcing. This study investigated the impact of two wildfire plumes (Plume 1 and 2) transported to Moscow on the optical properties of BC and BrC during August 2022. During the wildfires, the total light absorption at 370 nm (b(abs_370nm)) increased 2.3-3.4 times relative to background (17.30 +/- 13.98 Mm(-)(1)), and the BrC contribution to total absorption increased from 14 % to 42-48 %. BrC was further partitioned into primary (BrCPri) and secondary (BrCSec) components. Biomass burning accounted for similar to 83-90 % of BrCPri during the wildfires. The b(abs_370nm) of BrCPri increased 5.6 times in Plume 1 and 11.5 times in Plume 2, due to the higher prevalence of peat combustion in Plume 2. b(abs_370nm) of BrCSec increased 8.3-9.6 times, driven by aqueous-phase processing, as evidenced by strong correlations between aerosol liquid water content and b(abs_370nm) of BrCSec. Daytime b(abs_370nm) of BrCSec increased 7.6 times in Plume 1 but only 3.6 times in Plume 2, due to more extensive photobleaching, as indicated by negative correlations with oxidant concentrations and longer transport times. The radiative forcing of BrCPri relative to BC increased 1.8 times in Plume 1 and Plume 2. In contrast, this increase for BrCSec was 3.4 times in Plume 1 but only 2.3 times in Plume 2, due to differences in chemical processes, which may result in higher uncertainty in its radiative forcing. Future work should prioritize elucidating both the emissions and atmospheric processes to better quantify wildfire-derived BrC and its radiative forcing.
Both freeze-thaw cycles and vegetation cover changes significantly influence slope runoff and sediment yield in permafrost regions. Nevertheless, their synergistic mechanisms remain inadequately quantified and poorly understood. Through simulated rainfall experiments conducted on slopes in the source region of the Yangtze River, this study investigated the impacts of vegetation cover variation combined with soil freeze-thaw processes on runoff and sediment yield from typical alpine meadows and alpine steppes. The results indicate that: (1) The three factors of vegetation type and coverage, as well as rainfall intensity, jointly shape the relationship between precipitation runoff and sediment. Alpine meadows showed stronger erosion resistance than alpine steppes. (2) The freeze-thaw process of soil dominated the runoff and sediment generation: Runoff volume across varying vegetation coverage followed the order: autumn freezing period > spring thawing period > summer thawed period. However, sediment yield was highest during the spring thawing period, followed by the autumn freezing period and summer thawed period. (3) For higher vegetation coverage, freeze-thaw effects had a greater impact on runoff than on sediment yield; on the contrary, under low-coverage vegetation, the freeze-thaw process influenced sediment yield more than runoff; These findings provide theoretical guidance for achieving integrated soil erosion regulation goals in alpine grassland ecosystems within the Qinghai-Tibet Plateau under climate change.
This study assesses the stability of the Bei'an-Hei'he Highway (BHH), located near the southern limit of latitudinal permafrost in the Xiao Xing'anling Mountains, Northeast China, where permafrost degradation is intensifying under combined climatic and anthropogenic influences. Freeze-thaw-induced ground deformation and related periglacial hazards remain poorly quantified, limiting regional infrastructure resilience. We developed an integrated framework that fuses multi-source InSAR (ALOS, Sentinel-1, ALOS-2), unmanned aerial vehicle (UAV) photogrammetry, electrical resistivity tomography (ERT), and theoretical modeling to characterize cumulative deformation, evaluate present stability, and project future dynamics. Results reveal long-term deformation rates from -35 to +40 mm/yr within a 1-km buffer on each side of the BHH, with seasonal amplitudes up to 11 mm. Sentinel-1, with its 12-day revisit cycle, demonstrated superior capability for monitoring the Xing'an permafrost. Deformation patterns were primarily controlled by air temperature, while precipitation and the topographic wetness index enhanced spatial heterogeneity through thermo-hydrological coupling. Wavelet analysis identified a 334-day deformation cycle, lagging climate forcing by similar to 107 days due to the insulating effects of peat. Early-warning analysis classified 4.99 % of the highway length as high-risk (subsidence 10.91 mm/yr). The InSAR-based landslide prediction model achieved high accuracy (Area Under the Receiver Operating Characteristic (ROC) Curve, or AUC = 0.9486), validated through field surveys of subsidence, cracking, and slow-moving failures. The proposed 'past-present-future' framework demonstrates the potential of multi-sensor integration for permafrost monitoring and provides a transferable approach for assessing infrastructure stability in cold regions.
Ecosystem carbon use efficiency (CUE) is a key indicator of an ecosystem's capacity to function as a carbon sink. While previous studies have predominantly focused on how climate and resource availability affect CUE through physiological processes during the growing season, the role of canopy structure in regulating carbon and energy exchange, especially its interactions with winter climate processes and nitrogen use efficiency (NUE) in shaping ecosystem CUE in semi-arid grasslands, remains insufficiently understood. Here, we conducted a 5-year snow manipulation experiment in a temperate grassland to investigate the effects of deepened snow on ecosystem CUE. We measured ecosystem carbon fluxes, soil nitrogen concentration, species biomass, plants' nitrogen concentration, canopy height and cover and species composition. We found that deepened snow increased soil nitrogen availability, while the concurrent rise in soil moisture facilitated nutrient acquisition and utilization. Together, these changes supported greater biomass accumulation per unit of nitrogen uptake, thereby enhancing NUE. In addition, deepened snow favoured the dominance of C3 grasses, which generally exhibit higher NUE and greater height than C3 forbs, providing a second pathway that further elevated community-level NUE. The enhanced NUE, through both physiological efficiency and compositional shifts, promoted biomass production and facilitated the development of larger canopy volumes. Larger canopy volumes under deepened snow increased gross primary production through improved light interception, while the associated increase in autotrophic maintenance respiration was moderated by higher NUE. Besides, denser canopies reduced understorey temperatures throughout the day, particularly at night, thereby suppressing heterotrophic respiration. Ultimately, deepened snow increased ecosystem CUE by enhancing carbon uptake while limiting respiratory carbon losses. Synthesis. These findings demonstrated the crucial role of biophysical processes associated with canopy structure and NUE in regulating ecosystem CUE, which has been largely overlooked in previous studies. We also highlight the importance of winter processes in shaping carbon sequestration dynamics and their potential to modulate future grassland responses to climate change.
Frozen soils, including seasonally frozen ground and permafrost, are rapidly changing under a warming climate, with cascading effects on water, energy, and carbon cycles. We synthesize recent advances in the physics, observation, and modeling of frozen-soil hydrology, emphasizing freeze-thaw dynamics, infiltration regimes and preferential flow, groundwater-permafrost interactions (including talik development and advective heat), and resulting shifts in streamflow seasonality. Progress in in situ sensing, geophysics, and remote sensing now resolves unfrozen water, freezing fronts, and active-layer dynamics across scales, while land-surface and tracer-aided hydrological models increasingly represent phase change, macropore bypass, and vapor transport. Thaw-induced activation of subsurface pathways alters recharge and baseflow, influences vegetation and biogeochemistry, and modulates greenhouse-gas emissions. Key uncertainties persist in scaling micro-scale processes, parameterizing ice-impeded hydraulics, and representing abrupt thaw and wetland dynamics. We outline a tiered modeling framework, priority observations, and integration of vegetation-hydrology-carbon processes to improve projections of cold-region water resources and climate feedbacks.
Light-absorbing carbonaceous aerosols, comprising black carbon (BC) and brown carbon (BrC), significantly influence air quality and radiative forcing. Unlike traditional approaches that use a fixed value of absorption & Aring;ngstrom exponent (AAE), this study investigated the absorption and optical properties of carbonaceous aerosols in Beijing for both local emission and regional transport events during a wintertime pollution event by using improved AAE results that employs wavelength-dependent AAE (WDA). By calculating the difference of BC AAE at different wavelengths using Mie theory and comparing the calculated results to actual measurements from an Aethalometer (AE31), a more accurate absorption coefficient of BrC can be derived. Through the analysis of air mass sources, local emission was found dominated the pollution events during this study, accounting for 81 % of all cases, while regional transport played a minor role. Carbonaceous aerosols exhibited a continuous increasing trend during midday, which may be attributed to the re-entrainment of nighttime-accumulated carbonaceous aerosols to the surface during the early planetary boundary layer (PBL) development phase, as the mixed layer rises, combined with the variation of PBL and anthropogenic activity. At night, variations in the PBL height, in addition to anthropogenic activities, effectively contributed to surface aerosol concentrations, leading to peak surface aerosol values during local pollution episodes. The diurnal variation of AAE470/880 exhibited a decreasing trend, with a total decrease of approximately 12 %. Furthermore, the BrC fraction showed a constant diurnal variation, suggesting that the declining AAE470/880 was primarily influenced by BC, possibly due to enhanced traffic contributions.
The High Arctic deserts of remote northern Greenland are expected to become warmer and wetter due to climate change. Precipitation changes will increase fluctuations in surface soil salinity, and the same happens for thawed permafrost soil where stable salt concentrations are replaced with fluctuating salinity during annual freeze-thaw cycles. Both have unknown effects on the microbial communities and their emissions of microbial volatile organic compounds (MVOCs). These compounds are produced from various pathways mainly as secondary metabolites and have ecological and climatic implications when released into the environment and the atmosphere. Thus, it is important to explore the effects of environmental changes, such as changes in salinity, on soil microbial communities and their MVOC emissions. Here, we characterize the MVOC production of three novel bacterial isolates from northern Greenland throughout their growth period under low, moderate, and high salt concentrations. We demonstrate that salinity significantly alters both the quantity and composition of MVOCs emitted by all three strains, including changes in the emissions of sulphur- and nitrogen-containing compounds, potentially leading to ecosystem nutrient loss. The observed changes in MVOC profiles suggest that changes in soil salinity due to climate change could alter microbial metabolism and MVOC emissions, with potential implications for Arctic nutrient cycling and atmospheric chemistry. Novel Arctic bacterial isolates were found to produce diverse microbial volatile organic compounds, including sulphur- and nitrogen-containing gases, with emissions strongly shaped by changing soil salinity
The reasonable value of good gradation characteristic parameters is key in designing and optimising soil-rock mixed high fill embankment materials. Firstly, the DJSZ-150 dynamic-static large-scale triaxial testing instrument was used for triaxial compression shear tests on compacted skeleton structure soil-rock mixture standard specimens. The changes in strength and deformation indicators under different gradation parameters and confining pressure were analysed. Then, based on the Janbu empirical formula, relationships between parameters K, n, and (sigma 1-sigma 3)ult and the coefficient of uniformity Cu and coefficient of curvature Cc were explored. Empirical fitting formulas for Duncan-Chang model constants a and b were proposed, establishing an improved Duncan-Chang model for soil-rock mixtures considering gradation characteristics and stress states. Finally, based on significant differences in particle spatial distribution caused by gradation changes, three generalised models of matrix-block stone motion from different particle aggregation forms were proposed. Results indicate the standard specimen's strength and deformation indicators exhibit significant gradation effects and stress-state correlations. The improved Duncan-Chang model effectively simulates the stress-strain relationship curve under different gradations and confining pressure, with its characteristics explainable based on the matrix block stone motion generalised model.