Subway subgrades typically consist of alternating deposits of soil layers with significantly different physical and mechanical properties. However, the overall dynamic characteristics and the evolution of micro-porous structures in stratified soils is often overlooked in current studies. In this study, cyclic triaxial tests were conducted on homogeneous sand, silt and stratified soils with different height ratios, and nuclear magnetic resonance (NMR) was used to investigate the changes in pore structure and moisture content. The dynamic behavior and macroscopic deformation mechanisms were systematically investigated in terms of stress amplitude, confining pressure, and layer height ratio (the ratio of sand to silt height). The results show that as the sand height ratio increases, the axial strain and pore water pressure first increase and then decrease, reaching the maximum when h(Sand): h(Silt) = 2:1. When the confining pressure is 100 kPa, the axial strain of h(Sand): h(Silt) = 2:1 is 181.08 % higher than that of silt. Under the dynamic loading, the stratified soils form a dense skeletal structure near the stratification plane, which hinders the flow and dissipation of pore water, so that the pore water agglomeration phenomenon occurs near the stratification plane, which aggravates the accumulation of residual pore pressure and reduces the deformation resistance. However, when h(Sand): h(Silt) = 4:1, the influence of the stratification planes is significantly reduced, and the deformation characteristics approach homogeneity. This study reveals the dynamic characteristics of stratified soils by comparing and analysing homogeneous samples.
change of unfrozen water content in pores of rock during freeze-thaw process is one of the key factors affecting its mechanical properties. In this paper, the sandstone is taken as the research object, and the pore water content of rock during freeze-thaw process (20, 0, -2, -4, -6, -10, -15, -10, -6, -4, -2, 0, 20 degrees C) is monitored by low-field nuclear magnetic resonance system (NMR), and the evolution law of unfrozen water content with temperature is analyzed. The influence of the evolution of unfrozen water content on the mechanical properties of rock during freeze-thaw process is also discussed. The research findings show that the pore water in rocks during the freezing-thawing process is significantly influenced by temperature, passing through five stages: supercooling, rapid freezing, slow freezing, slow melting, and accelerated melting. A distinct hysteresis phenomenon is observed in the rock during thawing. At identical temperatures, the unfrozen water content during freezing is notably higher than during thawing. Consequently, the peak intensity and elastic modulus during thawing are significantly greater than during freezing. The relationship between uniaxial compressive strength, rock elastic modulus, and unfrozen water content in freeze-thaw process can be expressed by exponential function. At the beginning of freezing, the change of rock mechanical parameters is mainly affected by the increase of pore ice content and the cementation effect of pore ice on rock particles. With the further decrease of temperature, the thickness of adsorbed water film decreases, and the adsorption capacity increases, so that the integrity between pore ice and rock particles is enhanced, and rock mechanical parameters further change.
Low cohesion and poor scour resistance make sandy bank slopes in the lower reaches of rivers susceptible to instability and damage. Soil stabilization is one of ecological flexible bank protection technologies, which not only pays attention to the function of flood control, but also pays attention to the function of ecological and environmental protection. This study conducts a series of mechanical property test, nuclear magnetic resonance test (NMR), computed tomography test (CT), and scanning electron microscope test (SEM) on hydrogel-stabilized sand to highlight the link between pore-scale and macroscopic properties. The results of the mechanical tests indicate a linear increase in unconfined compressive strength, flexural strength, tensile strength, and cohesion with increasing hydrogel content. Conversely, the internal friction angle appears to be less impacted by fluctuations in hydrogel content. The specimen with 1 % hydrogel content exhibited a multi-peak T2 curve, and the specimens with 2 %, 3 %, and 4 % hydrogel contents share a similar three-peak spectrum shape. The start-end relaxation times, peak widths, and amplitudes of peaks decreased with the increase in hydrogel content. As the hydrogel content increased, there was a progressive increase in accumulated porosity, ranging from 1.0 % to 3.5 %. As the hydrogel content increased, the volume occupied by the hydrogel increased, and the spatial distribution of the hydrogel became more homogeneous as the hydrogel content increased and more hydrogel-sand aggregates formed. The number, length, and width of cracks decreased significantly and accordingly.
This study examines how acid rain affects the microstructure and mechanical properties of cement-amended loess, crucial for ensuring the safety of engineering projects. We aimed to investigate how acid rain influences the micro-mechanical behavior of cement-amended loess and its damage characteristics under combined acid rain and loading conditions. Cement-amended loess samples were exposed to artificial acid rain with varying pH levels, and changes in their strength and microstructure were analyzed using unconfined compression tests, SEM, NMR, and XRD techniques. Our findings reveal that acid rain erosion of cement-amended loess triggers hydration and erosion reactions. As acid rain concentration increases, the unconfined compressive strength of the amended soil gradually decreases, accompanied by an expansion of pore spaces from small to large-medium pores. Additionally, particle contacts shift from face-to-face and side-to-side to point-to-point and side-to-side configurations. Furthermore, prolonged erosion time exacerbates pore space expansion, indicating a time-dependent effect on soil integrity. To characterize these effects, we developed a constitutive equation within the framework of damage mechanics that incorporates both erosion and loading. This equation successfully aligns with experimental data, providing a comprehensive understanding of the coupled effects of acid rain erosion and mechanical loading on cement-amended loess. These insights are pivotal for designing resilient engineering solutions in environments prone to acid rain erosion.
Urban loess subgrades are affected by considerable vibrations from traffic, especially when the underground pipelines leak, and seepage under vibrations often causes road damage. However, the influence of vibrations on the water permeability of loess subgrades remains elusive. Here we address this issue by performing vibrationassisted permeability tests and scanning electron microscopy, mercury intrusion porosimetry, and suction-nuclear magnetic resonance measurements. This allowed the evolution of the saturated hydraulic conductivity (Ks), water-air migration, soil microstructure, and pore water forms to be evaluated. The water permeability of the loess subgrade is promoted by vibrations due to the increase in Ks, the acceleration of wet front migration, and the escape of entrapped air. Moreover, the value of Ks under vibration is 3-14 times greater than that without vibration, and the maximum increase occurs at a vibration frequency near the natural frequency of the loess. Furthermore, a theoretical framework of loess vibration permeability is proposed, and the mechanisms by which vibration accelerates the permeability behavior of the loess subgrade are revealed. Vibration promotes the expansion of soil pores, a decrease in the binding capacity of pore water, the mobilization of fine particles, and the formation of local low-permeability layer. Moreover, it accelerates the opening of entrapped air bubbles and the displacement of water-air, the reduction in seepage resistance. Thus, seepage water flows rapidly along infiltration channels. These findings are highly important for the road safety performance and the sustainable development of the traffic environment in loess regions.
This paper presents an experimental study of nanomaterials' influence on improving the mechanical behaviour and microstructure of cemented soils. The strength characteristics were obtained through uniaxial compressive strength test. The influences of nanomaterials on the pore size distribution and micromorphology of cemented soil were investigated by nuclear magnetic resonance, scanning electron microscope, and X-ray diffraction. The results show that the uniaxial compressive strength of the cemented soil increases with the nano-SiO2 content. When the content is 4%, the strength of the cemented soil increases by about 40%. Improvement with nano-Fe3O4 shows different trends. The strength of the cemented soil increases with the nano-Fe3O4 content, reaching a peak at 3% of the nano content, and then decreases with the increase in the content. The transverse relaxation time spectrum curve of the cemented soil is trimodal, and the main peak covers a dominant area. Adding nanomaterials improves the pore distribution, transforms large pores into small pores, and greatly reduces the pores of the cemented soil. The porosity of the cemented soil decreases exponentially with the increase of nano-SiO2 content. On the contrary, with the increase of nano-Fe3O4 content, the porosity of the cemented soil specimen first decreases and then increases, the porosity reaches the minimum at 3% content. Nano-SiO2 and nano-Fe3O4 can effectively fill the internal pores of the cemented soil and accelerate the hydration process. In addition, nano-SiO2 participates in the hydration reaction of cement and has a good promoting effect on the mechanical properties of cemented soil.
Different salt types have different effects on the liquid water content of saline soil, resulting in differences in the physico-mechanical properties and water/salt migration process of saline soil. In order to investigate the phase transition process and the change of the liquid water content in composite saline soil, saline soils with the same total salt content and different ratios of sodium chloride and sodium sulfate were taken as the objects. The results indicated that two phase transitions occur in the saline soil with single salt type, while three phase transitions can be found in the composite saline soil with two salt types. Mirabilite crystallization contributes to the 1st phase transition, mirabilite and ice precipitate together in the 2nd phase transition process, and mirabilite, ice, and hydrohalite precipitate simultaneously in the 3rd phase transition process. The liquid water is reduced in the phase transition process during cooling, and the pore characteristic has been changed significantly. The change of the liquid water content reflects the processes of salt crystallization and ice formation in saline soil, then the amounts of ice and hydrated salt were calculated at different temperatures, and the mechanism of inhibiting the deformation of sulfate saline soil was examined by adding sodium chloride. The results have reference value for those seeking understanding of the deformation in natural composite saline soil, and these findings can provide theoretical basis for the phase transition mechanism of saline soil in cold regions.
Clay is widely encountered in nature and directly influences seepage behaviors, exerting a crucial impact on engineering applications. Under low hydraulic gradients, seepage behaviors have been observed to deviate from Darcy's law, displaying a non-linear trend. However, the impacts of clay content on non-linear seepage behavior and its pore-scale mechanisms to date remain unclear. In this study, constant-head seepage experiments were conducted in sand-clay porous media under various hydraulic gradients. Low-field nuclear magnetic resonance (LF-NMR) technology was utilized to monitor the bound-water and free-water contents of sand-clay porous media under different seepage states. The results show a threshold hydraulic gradient (i(0)) below which there is no flow, and a critical hydraulic gradient (i(cr)) below which the relationship between the hydraulic gradient (i) and seepage velocity (v) is non-linear. Both hydraulic gradients increased with clay content. Moreover, the transformation between bound water and free water was observed during the seepage-state evolution (no flow to pre-Darcy or pre-Darcy to Darcy). As the hydraulic gradient reached the i0, the pore water pressure gradually overcame the adsorption force of the bound-water film, reducing the thickness of the bound-water film, and causing non-linear seepage behavior. When i(0) < i < i(cr), the enlarging hydraulic gradient triggers the thinning of bound water and enhances the fluidity of pore water. Moreover, the increasing clay content augments the bound-water content required for the seepage state's change.
Clay, as the most common soil used for foundation fill, is widely used in various infrastructure projects. The physical and mechanical properties of clay are influenced by the pore solution environment. This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations. Moreover, the development of cumulative strain in clay is analyzed, and a fitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration, consolidation stress ratio, and cycle number. In particular, the effects of the NaCl solution concentration and consolidation stress ratio on the pore distribution of the test samples before and after cyclic loading are examined, and the relationship between microscopic pore size and macroscopic cumulative strain is obtained accordingly. Our results show that as the consolidation stress ratio grows, an increasing number of large pores in the soil samples are transformed into small pores. As the NaCl solution concentration becomes higher, the number of small pores gradually decreases, while the number of large pores remains unchanged. Cyclic loading causes the disappearance of the large pores in the samples, and the average pore size before cyclic loading is positively correlated with the axial cumulative strain after cyclic loading. The cumulative strain produced by the soil under cyclic loading is inversely proportional to the NaCl solution concentration and consolidation stress ratio.
Aufeis are sheets of ice unique to cold regions that originate from repeated flooding and freezing events during the winter. They have hydrological importance associated with summer flows and winter insulation, but little is known about the seasonal dynamics of the unfrozen sediment layer beneath them. This layer may support perennial groundwater flow in regions with otherwise continuous permafrost. For this study, ground penetrating radar (GPR) were collected in September 2016 (maximum thaw) and April 2017 (maximum frozen) at the Kuparuk aufeis field on the North Slope of Alaska. Supporting surface nuclear magnetic resonance data were collected during the maximum frozen campaign. These point-in-time geophysical data sets were augmented by continuous subsurface temperature data and periodic Structure-from-Motion digital elevation models collected seasonally. GPR and difference digital elevation model data showed up to 6 m of ice over the sediment surface. Below the ice, GPR and nuclear magnetic resonance identified regions of permafrost and regions of seasonally frozen sediment (i.e., the active layer) underlain by a substantial lateral talik that reached >13-m thickness. The seasonally frozen cobble layer above the talik was typically 3- to 5-m thick, with freezing apparently enabled by relatively high thermal diffusivity of the overlying ice and rock cobbles. The large talik suggests that year-round groundwater flow and coupled heat transport occurs beneath much of the feature. Highly permeable alluvial material and discrete zones of apparent groundwater upwelling indicated by geophysical and ground temperature data allows direct connection between the aufeis and the talik below.