共检索到 1

To address the challenges of extraction difficulties and penetration risks associated with traditional spudcan jackup platforms, a new jack-up platform featuring a pile-leg mat foundation is proposed. The horizontal bearing capacity of hybrid foundations under the influence of dynamic loads is a critical factor that requires close attention. This research numerically examined the dynamic response of a hybrid foundation to horizontal cyclic loading on a sandy seabed. A user-defined subroutine was employed to incorporate the Cyclic Mobility (CM) model within Abaqus, facilitating the analysis of sand response under different densities. The horizontal cyclic bearing capacities of the foundation were investigated considering the effects of different loading conditions, sand density, and pile-leg penetration depth. Simulation results indicate that the cyclic loading amplitude, frequency, and load mode significantly influence the generation of soil excess pore water pressure (EPWP), subsequently affecting foundation displacement and unloading stiffness. Under cyclic loading, the loose sandy seabed shows the most pronounced fluctuations in EPWP and effective stress, leading to surface soil liquefaction. While surface soil in medium-dense and dense sand conditions remains non-liquefied, their effective stress still varies significantly. Increasing the pile-leg penetration depth enhances the foundation's horizontal bearing capacity while affecting its vertical bearing capacity slightly.

期刊论文 2025-07-01 DOI: 10.1016/j.soildyn.2025.109336 ISSN: 0267-7261
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页