共检索到 2

Accurately capturing the seismic response of underground structures subjected to obliquely incident seismic waves, particularly when the angle of incidence surpasses the critical value, remains a challenging task in earthquake engineering. To address this gap, this paper presents a three-dimensional (3D) nonlinear seismic analysis of subway stations embedded in a layered site, specifically in response to obliquely incident shear (SV) waves at arbitrary angles. An innovative procedure, termed the coupled dynamic stiffness matrix-finite element method (DSM-FEM), is introduced to enable seismic input by transforming responses induced by arbitrarily incoming SV waves into equivalent nodal loads. To accurately simulate wave propagation within the site, a viscous-spring artificial boundary is utilized, while a nonlinear generalized Masing model that incorporates modified damping is employed. Using the Daikai subway station as a benchmark, the research examines the effects of varying oblique incident angles on the structural response, taking into account dynamic soil-structure interaction. The results reveal that the maximum response, including peak deformation, internal forces, Mises stress, occurs when the incident angle approaches the critical value. Beyond this critical angle, the seismic response notably diminishes. Additionally, the influence of horizontal incident angles is found to be noticeable, leading to variations in deformation patterns and internal forces across different structural components. Specifically, it has been observed that the drift ratio, displacement, shear force, acceleration, and Mises stress exhibit a decreasing trend as the horizontal incident angles increase. These findings highlight the significance of considering non-vertical input ground motion in seismic analysis, and offer valuable insights for the structural design and safety evaluation of underground structures.

期刊论文 2025-09-01 DOI: 10.1016/j.tust.2025.106660 ISSN: 0886-7798

This study investigates the effects of adjacent deep excavation on the seismic performance of buildings. For that purpose, the numerical models are constructed for different buildings (i.e., 5-Story building and 15-Story building) considering the deep excavation-soil-structure interaction (ESSI) and soil-structure interaction (SSI). The results achieved from the ESSI and SSI systems are discussed and compared. Fully nonlinear numerical models with material, geometric, and contact nonlinearities are developed. Eleven earthquakes with different intensities, epicentral distances, significant durations, and frequency contents are applied to the models; and, the numerical results are given in terms of average records. The buildings are carefully designed and verified based on common design codes. The numerical modelling procedure of the deep excavation-soil system is validated using centrifuge test data. The comparisons between the ESSI and SSI systems are carried out in terms of accelerations, lateral displacements, inter-story drifts, story shear forces, and the nonlinear behavior of the soil medium under the buildings. The results show that it is necessary to consider the ESSI effect, and it might significantly change the seismic behavior of buildings adjacent to the deep excavations. The findings from this study can provide valuable recommendations for engineers to design buildings close to deep excavations under earthquakes.

期刊论文 2024-08-01 DOI: 10.1007/s10518-024-01966-1 ISSN: 1570-761X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页