The use of mixed forests and non-native tree species have the potential to mitigate climate change impacts and enhance biodiversity. However, little is known about how forest composition and environmental factors affect each step of natural regeneration in mixed forests, especially in mixtures with non-native trees. Here we investigated how forest composition affected European beech seed survival (through seed tracking), seed sprouting (via field germination experiments), and seedling survival (monthly seedling monitoring) in pure beech forests and in admixtures with Norway spruce and the introduced Douglas-fir in a mast and non-mast year of beech. We also assessed how biotic and abiotic factors (small mammal abundance, ungulate access, seed production, seed burial, canopy cover, distance to nearest adult tree, seedling aggregation, understory density, browsing damage, and soil properties) affected these regeneration dynamics. Seed survival was negatively affected by the presence of conifers and mouse abundance. Seed germination was influenced by whether seeds were buried or not. Seedling survival increased in Douglas-fir admixtures, and in forests with higher soil quality. Browsing damage and ungulate access diminished seedling survival. Seed production had the greatest influence on absolute number of seedlings. Forest composition and environmental factors had distinct impacts on regeneration of beech depending on its ontogenetic stage. Here, we provide evidence supporting the notion that Douglas-fir is not impairing the regeneration of native trees in mixed forests. In fact, mixtures with Douglas-fir benefited the survival of beech seedlings, likely due to better soil properties and less damage from herbivores on these stands.
Introduction: Soil drought during summer in Central Europe has become more frequent and severe over the last decades. European forests are suffering increasing damage, particularly Norway spruce. Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), a non-native tree species, is considered as a promising alternative to build drought-resilient forests. The main goal of this study was to investigate the intraannual radial stem growth and sap flow performance of Douglas-fir along a precipitation gradient across Germany under severe drought. Material and methods: Sap flow and stem radial changes of up to ten trees each at four sites with different precipitation regimes were measured in combination with volumetric soil water content during the growing season of 2022. Measurements of stem radial changes were used to calculate the trees' stem water deficit, a proxy for tree water status and drought stress. Results: The severe summer drought of 2022 led to an early growth cessation and a significant reduction in daily sap flow at all four sites monitored. We could identify a site-specific threshold in soil water availability ranging between 21.7 and 29.6% of relative extractable water (REW) under which stem water reserves cannot be replenished and thereby inhibiting radial growth. We could also demonstrate that at this threshold, sap flow is heavily reduced to between 43.5 and 53.3%, and for a REW below 50%, sap flow linearly decreases by 1.1-2.0% per 1% reduction in REW. This reduction tends to follow the humidity gradient, being more pronounced at the most oceanic characterized site and suggesting an adaptation to site conditions. Even though Douglas-fir is considered to be more drought stress resistant than Norway spruce, growth and sap flow are greatly reduced by severe summer drought, which became more frequent in recent years and their frequency and intensity is likely to increase. Conclusions: Our results suggest that timber production of Douglas-fir in Central Europe will decline considerably under projected climate change, and thus pointing to site specific growth constraints for a so far promising non-native tree species in Europe.
Cold winter temperatures govern the distribution and abundance of many insect species, but refugia that provide microclimates can moderate temperature-driven mortality. Winter temperatures have been implicated in limiting the survival and range of Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae; redbanded stink bug), an economically damaging invasive pest in the southeastern United States, but the role of refugia in overwintering survival of this pest is poorly understood. We conducted 2 studies in successive years to evaluate how leaf litter from hardwoods, pines, and soybeans modulate overwintering site selection and survival of P. guildinii. In the second-year study, we also quantified the buffering effect of the 3 leaf litter types compared to ambient conditions and assessed diapause. In the first-year study, we found that stink bugs preferentially dispersed into leaf litter compared with remaining unsheltered on bare soil; no clear preference among leaf litter types was found. In the second year, however, no clear differences were found among leaf litter types and bare soil. Means of daily minimum temperatures under leaf litter were at least 3.0 +/- 0.9 degrees C (SE) warmer and generally less variable than ambient conditions. While high mortality in both studies illustrates that more work must be done to fully understand overwintering survival, limited survival through potentially lethal conditions in the first-year study nonetheless emphasizes the possibility of populations persisting and rebounding in the following spring. Furthermore, our study highlights the potential for stink bugs to persist in areas with lethal ambient temperatures by dispersing into widely available substrates.