共检索到 2

A large-strain model was developed to study the consolidation behavior of soil deposits improved with prefabricated vertical drains and subjected to surcharge and vacuum preloading. The smear effect resulting from the installation of drains was incorporated in the model by taking the average values of permeability and compressibility in the smear zone. The dependence of permeability and compressibility on void ratio and the effects of non-Darcian flow at low hydraulic gradients were also incorporated in the model. The creep effect was also taken into account for secondary consolidation of soft soil deposits. The model was applied to two different embankments located at Suvarnabhumi International Airport, Thailand, and Leneghan, Australia. It was observed that the creep effect led to an additional settlement of 12%-17% after the primary consolidation phase. The study further demonstrated that creep settlements increased with the non-Darcian effect. The difference between surface settlement results with and without the creep effect increased from about 12% to 15% when the non-Darcian parameter (n) increased from 1 to 1.6. However, beyond a threshold value of n >= 1.6, the influence of non-Darcian flow on creep settlement diminished. The value of average and actual effective stresses increased by about 13% and 17%, respectively, when the value of n increased from 1 to 2. However, the impact of n on effective stresses became negligible for values of n >= 2.5. The rate of consolidation decreased approximately by about four times when the permeability ratio ((k) over tilde (u)/(k) over tilde (s)) increased from 1 to 5.

期刊论文 2025-06-01 DOI: 10.1061/IJGNAI.GMENG-10597 ISSN: 1532-3641

Vertical drain assisted by vacuum and/or surcharge preloading is an effective method for improvement of soft ground with high water content. A large settlement will occur, and the water flow may deviate from the Darcy's law. The creep is also non-negligible in estimating the long-term settlement of such soft ground. To accurately predict the consolidation process, this study develops an axisymmetric finite strain consolidation model based on Barron's free-strain theory incorporating the creep, radial and vertical flows, non-Darcian flow law, and void ratio-dependent hydraulic conductivity during the consolidation process. First, to mathematically validate the model and highlight the new model's features, the existing model not considering the creep and the non-Darcy flow is also adopted as a reference for comparison based on a benchmark simulation. Then, Rowe cell tests involving non-Darcian flow are simulated by the new model to experimentally validate the predictive performance. Furthermore, the model is applied to simulate the consolidation process of a long-term monitoring embankment to examine the applicability of the model for engineering practice. All results demonstrate that the model is capable of accurately describing the consolidation of soft soils with vertical drains under combined loading with features of creep and non-Darcy flow.

期刊论文 2024-06-01 DOI: 10.1016/j.geotexmem.2023.10.008 ISSN: 0266-1144
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页