共检索到 3

The purpose of this study was to explore the carbon and nitrogen metabolism mechanisms of sand-cultivated cucumbers under different deficit irrigation-nitrogen management strategies and provide a theoretical basis for their greenhouse management. This study set up two factors, the deficit irrigation level and the nitrogen application rate, and conducted an experiment on deficit irrigation-nitrogen coupling of sand-cultivated cucumbers using a quadratic saturation D-optimal design. Seven treatments were set up in the experiment, to measure the soluble sugar and protein contents, as well as the activity of key enzymes for carbon and nitrogen metabolism at five different growth stages. The results indicate that the 80% irrigation with 623 kg N hm-2 (IN4) treatment significantly improved the soluble sugar, protein, and actual leaf nitrogen contents of cucumber at the five different growth stages and, as a result, achieved higher sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities in the cucumber leaves. Furthermore, such improvements were due to the reduction in oxidative damage of sand-cultivated cucumber at various growth stages. The IN4 and 89% irrigation with 1250 kg N hm-2 (IN5) treatments significantly increased the activities of RuBisCO, catalase (CAT), peroxidise (POD), and superoxide dismutase (SOD) at various growth stages of sand-cultivated cucumber. The higher activities of glutamate dehydrogenase (GLDH), glutamate synthase (GOGAT), nitrate reductase (NR), glutamine synthase (GS), acid invertase enzyme (AIE), neutral invertase enzyme (NIE), and better antioxidative enzyme activities were recorded under the IN4 treatments at various growth stages, which effectively improve (69.6%) cucumber yield. The soil properties, carbon and nitrogen metabolism, and antioxidant metabolism were positively correlated with sand-cultivated cucumber yield in a greenhouse. We concluded that the IN4 treatment was the better deficit irrigation-nitrogen management strategy because it considerably improves carbon and nitrogen metabolism, antioxidant enzyme activities, and sand-cultivated cucumber yield in a greenhouse.

期刊论文 2024-07-01 DOI: 10.3390/land13070958

Many contaminated soils contain several toxic elements (TEs) in elevated contents, and plant-TE interactions can differ from single TE contamination. Therefore, this study investigated the impact of combined contamination (As, Cd, Pb, Zn) on the physiological and metabolic processes of lettuce. After 45 days of exposure, TE excess in soil resulted in the inhibition of root and leaf biomass by 40 and 48%, respectively. Oxidative stress by TE accumulation was indicated by markers-malondialdehyde and 5-methylcytosine-and visible symptoms of toxicity (leaf chlorosis, root browning) and morpho-anatomical changes, which were related to the change in water regime (water potential decrease). An analysis of free amino acids (AAs) indicated that TEs disturbed N and C metabolism, especially in leaves, increasing the total content of free AAs and their families. Stress-induced senescence by TEs suggested changes in gas exchange parameters (increase in transpiration rate, stomatal conductance, and intercellular CO2 concentration), photosynthetic pigments (decrease in chlorophylls and carotenoids), a decrease in water use efficiency, and the maximum quantum yield of photosystem II. These results confirmed that the toxicity of combined contamination significantly affected the processes of lettuce by damaging the antioxidant system and expressing higher leaf sensitivity to TE multicontamination.

期刊论文 2024-05-01 DOI: 10.3390/plants13101356 ISSN: 2223-7747

Water stress (WS) poses a significant threat to global food and energy security by adversely affecting soybean growth and nitrogen metabolism. This study explores the synergistic effects of exogenous salicylic acid (SA, 0.5 mM) and thiourea (TU, 400 mg L-1), potent plant growth regulators, on soybean responses under WS conditions. The treatments involved foliar spraying for 3 days before inducing WS by reducing soil moisture to 50% of field capacity, followed by 2 weeks of cultivation under normal or WS conditions. WS significantly reduced plant biomass, chlorophyll content, photosynthetic efficiency, water status, protein content, and total nitrogen content in roots and leaves. Concurrently, it elevated levels of leaf malondialdehyde, H2O2, proline, nitrate, and ammonium. WS also triggered an increase in antioxidant enzyme activity and osmolyte accumulation in soybean plants. Application of SA and TU enhanced the activities of key enzymes crucial for nitrogen assimilation and amino acid synthesis. Moreover, SA and TU improved plant growth, water status, chlorophyll content, photosynthetic efficiency, protein content, and total nitrogen content, while reducing oxidative stress and leaf proline levels. Indeed, the simultaneous application of SA and TU demonstrated a heightened impact compared to their separate use, suggesting a synergistic interaction. This study underscores the potential of SA and TU to enhance WS tolerance in soybean plants by modulating nitrogen metabolism and mitigating oxidative damage. These findings hold significant promise for improving crop productivity and quality in the face of escalating water limitations due to climate change.

期刊论文 2024-02-01 DOI: 10.1016/j.plaphy.2023.108320 ISSN: 0981-9428
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页