The tilt between Neptune's magnetic and rotational axes, along with Triton's orbital obliquity, causes a strong time variability of the moon's local electromagnetic environment. To constrain Triton's interaction with the ambient magnetospheric plasma, we apply a hybrid (kinetic ions, fluid electrons) model including the moon's ionosphere and induced field. To represent the extremes in the changes to the local electromagnetic field over a synodic rotation, we consider two orientations between the ambient magnetic field and flow velocity. For each, we first investigate the (analytical) magnetic signatures associated with the superposition of Triton's induced field and the magnetospheric field in the absence of any plasma interaction effects. To constrain the effect of Triton's ionosphere on the currents, we model the interaction between the ionospheric and magnetospheric plasma in isolation from the moon's inductive response, before combining these effects to investigate the complex scenario of plasma interaction and induction. Finally, we explore the sensitivity of the plasma interaction to changes in the ambient plasma density and the strength of Triton's inductive response. Despite plasma interaction signatures that dominate the plasma perturbations far from the moon (beyond similar to 3 Triton radii), we illustrate that the induced field is clearly discernible within similar to 3 Triton radii, regardless of the moon's location within Neptune's magnetosphere. We find that the orientation of the magnetospheric field and velocity vectors strongly affects Triton's plasma interaction; at times, resembling those of Jupiter's or Saturn's moons, while at others, revealing unprecedented signatures that are likely unique to moons of the ice giants.
The comparative study of planetary systems is a unique source of new scientific insight: following the six key science questions of the Planetary Exploration, Horizon 2061 long-term foresight exercise, it can reveal to us the diversity of their objects (Question 1) and of their architectures (Question 2), help us better understand their origins (Question 3) and how they work (Question 4), find and characterize habitable worlds (Question 5), and ultimately, search for alien life (Question 6). But a huge knowledge gap exists which limits the applicability of this approach in the solar system itself: two of its secondary planetary systems, the ice giant systems of Uranus and Neptune, remain poorly explored.Starting from an analysis of our current limited knowledge of solar system ice giants and their systems in the light of these six key science questions, we show that a long-term plan for the space exploration of ice giants and their systems will greatly contribute to answer these questions. To do so, we identify the key measurements needed to address each of these questions, the destinations to choose (Uranus, Neptune, Triton or a subset of them), the combinations of space platform(s) and the types of flight sequences needed.We then examine the different launch windows available until 2061, using a Jupiter fly-by, to send a mission to Uranus or Neptune, and find that:(1) an optimized choice of platforms and flight sequences makes it possible to address a broad range of the key science questions with one mission at one of the planets. Combining an atmospheric entry probe with an orbiter tour starting on a high-inclination, low periapse orbit, followed by a sequence of lower inclination orbits (or the other way around) appears to be an optimal choice.(2) a combination of two missions to each of the ice giant systems, to be flown in parallel or in sequence, will address five out of the six key questions and establish the prerequisites to address the sixth one: searching for life at one of the most promising Ice Giant moons.(3) The 2032 Jupiter fly-by window, which offers a unique opportunity to implement this plan, should be considered in priority; if this window cannot be met, using the 2036 Jupiter fly-by window to send a mission to Uranus first, and then the 2045 window for a mission to Neptune, will allow one to achieve the same objectives; as a back-up option, one should consider an orbiter + probe mission to one of the planets and a close fly-by of the other planet to deliver a probe into its atmosphere, using the opportunity of a future mission on its way to Kuiper Belt Objects or the interstellar medium;(4) based on the examination of the habitability of the different moons by the first two missions, a third one can be properly designed to search for life at the most promising moon, likely Triton, or one of the active moons of Uranus.Thus, by 2061 the first two missions of this plan can be implemented and a third mission focusing on the search for life can be designed. Given that such a plan may be out of reach of a single national agency, international collaboration is the most promising way to implement it.