Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming-two key environmental-change drivers in the Arctic-alter CO2 fluxes in three tundra habitats varying in soil moisture and plant-community composition. In a full-factorial experiment in high-Arctic Svalbard, we simulated grubbing and warming over two years and determined summer net ecosystem exchange (NEE) alongside its components: gross ecosystem productivity (GEP) and ecosystem respiration (ER). After two years, we found net CO2 uptake to be suppressed by both drivers depending on habitat. CO2 uptake was reduced by warming in mesic habitats, by warming and grubbing in moist habitats, and by grubbing in wet habitats. In mesic habitats, warming stimulated ER (+75%) more than GEP (+30%), leading to a 7.5-fold increase in their CO2 source strength. In moist habitats, grubbing decreased GEP and ER by similar to 55%, while warming increased them by similar to 35%, with no changes in summer-long NEE. Nevertheless, grubbing offset peak summer CO2 uptake and warming led to a twofold increase in late summer CO2 source strength. In wet habitats, grubbing reduced GEP (-40%) more than ER (-30%), weakening their CO2 sink strength by 70%. One-year CO2-flux responses were similar to two-year responses, and the effect of simulated grubbing was consistent with that of natural grubbing. CO2-flux rates were positively related to aboveground net primary productivity and temperature. Net ecosystem CO2 uptake started occurring above similar to 70% soil moisture content, primarily due to a decline in ER. Herein, we reveal that key environmental-change drivers-goose grubbing by decreasing GEP more than ER and warming by enhancing ER more than GEP-consistently suppress net tundra CO2 uptake, although their relative strength differs among habitats. By identifying how and where grubbing and higher temperatures alter CO2 fluxes across the heterogeneous Arctic landscape, our results have implications for predicting the tundra carbon balance under increasing numbers of geese in a warmer Arctic.
The Arctic has warmed nearly four times faster than the global average since 1979, resulting in rapid glacier retreat and exposing new glacier forelands. These forelands offer unique experimental settings to explore how global warming impacts ecosystems, particularly for highly climate-sensitive arthropods. Understanding these impacts can help anticipate future biodiversity and ecosystem changes under ongoing warming scenarios. In this study, we integrate data on arthropod diversity from DNA gut content analysis-offering insight into predator diets-with quantitative measures of arthropod activity-density at a Greenland glacier foreland using Structural Equation Modelling (SEM). Our SEM analysis reveals both bottom-up and top-down controlled food chains. Bottom-up control, linked to sit-and-wait predator behavior, was prominent for spider and harvestman populations, while top-down control, associated with active search behavior, was key for ground beetle populations. Bottom-up controlled dynamics predominated during the early stages of vegetation succession, while top-down mechanisms dominated in later successional stages further from the glacier, driven largely by increasing temperatures. In advanced successional stages, top-down cascades intensify intraguild predation (IGP) among arthropod predators. This is especially evident in the linyphiid spider Collinsia holmgreni, whose diet included other linyphiid and lycosid spiders, reflecting high IGP. The IGP ratio in C. holmgreni negatively correlated with the activity-density of ground-dwelling prey, likely contributing to the local decline and possible extinction of this cold-adapted species in warmer, late-succession habitats where lycosid spiders dominate. These findings suggest that sustained warming and associated shifts in food web dynamics could lead to the loss of cold-adapted species, while brief warm events may temporarily impact populations without lasting extinction effects.
Permafrost is strongly associated with human well-being and has become a frontier of cryospheric science. Professor Guodong Cheng is one of the most outstanding geocryologists in China. He was elected as an academician of the Chinese Academy of Sciences in 1993 and served as the president of the International Permafrost Association from 1993-1998. In the early 1980s, Professor Cheng proposed the hypothesis of the repeated-segregation mechanism for the formation of thick-layered ground ice near the permafrost table. Subsequently, in the early 2000s, he proposed the proactive roadbed cooling concept and led the successful development of a series of specific engineering measures that were fully applied in the Qinghai-Tibet Railway Project. Furthermore, he developed a conceptual model to describe the influences of changing permafrost on the groundwater system and discovered the sink-holing effect (channeling with improved hydraulic conductivity of warming permafrost). Professor Cheng has also developed theories on the three-dimensional zonation and proposed a classification system and an altitude model for high-altitude permafrost distribution. On this special occasion of Professor Cheng's 80th birthday, this paper summarizes his outstanding achievements on permafrost science, hoping the permafrost research community will carry forward the momentum to further advance permafrost science worldwide.
Among the essential tools to address global environmental information requirements are the Earth-Observing (EO) satellites with free and open data access. This paper reviews those EO satellites from international space programs that already, or will in the next decade or so, provide essential data of importance to the environmental sciences that describe Earth's status. We summarize factors distinguishing those pioneering satellites placed in space over the past half century, and their links to modern ones, and the changing priorities for spaceborne instruments and platforms. We illustrate the broad sweep of instrument technologies useful for observing different aspects of the physio-biological aspects of the Earth's surface, spanning wavelengths from the UV-A at 380 nanometers to microwave and radar out to 1 m. We provide a background on the technical specifications of each mission and its primary instrument(s), the types of data collected, and examples of applications that illustrate these observations. We provide websites for additional mission details of each instrument, the history or context behind their measurements, and additional details about their instrument design, specifications, and measurements.
Global warming and algal blooms have been two of the most pressing problems faced by the world today. In recent decades, numerous studies indicated that global warming promoted the expansion of algal blooms. However, research on how algal blooms respond to global warming is scant. Global warming coupled with eutrophication promoted the rapid growth of phytoplankton, which resulted in an expansion of algal blooms. Algal blooms are affected by the combined effects of global warming, including increases in temperatures, CO2 concentration, and nutrient input to aquatic systems by extreme weather events. Since the growth of phytoplankton requires CO2, they appear to act as a carbon sink. Unfortunately, algal blooms will release CH4, CO2, and inorganic nitrogen when they die and decompose. As substrate nitrogen increases from decompose algal biomass, more N2O will be released by nitrification and denitrification. In comparison to CO2, CH4 has 28-fold and N2O has 265-fold greenhouse effect. Moreover, algal blooms in the polar regions may contribute to melting glaciers and sea ice (will release greenhouse gas, which contribute to global warming) by reducing surface albedo, which consequently would accelerate global warming. Thus, algal blooms and global warming could form feedback loops which prevent human survival and development. Future researches shall examine the mechanism, trend, strength, and control strategies involved in this mutual feedback. Additionally, it will promote global projects of environmental protection combining governance greenhouse gas emissions and algal blooms, to form a geoengineering for regulating the cycles of carbon, nitrogen, and phosphorus.
With the global warming, the permafrost on the Qinghai-Tibetan Plateau (QTP) is degrading significantly, which brings potential threats to the major engineering projects built in or on it, e. g., the Qinghai-Tibet Highway, Qinghai-Tibet Railway, and Xinjiang-Tibet Highway. This study uses advanced survey and statistical methods to reveal the spatial distribution characteristics, development patterns, influencing factors, and formation mechanisms of the damages on the pavement induced by permafrost thawing and freeze-thaw cycles to identify their development process, evolution patterns, and different types of underlying permafrost. This will provide suggestions and guidance to the relevant departments in the decision-making, planning, design, and construction and maintenance of the running or future engineering projects on the QTP.
Climate warming leads to the aggravation of infrastructures and environmental risks in permafrost regions. There are few reports about the interaction between airport runway and permafrost foundation. Based on long term field monitoring, remote sensing and comparative analysis approaches, our study quantitatively investigates the impacts of runway and climate on permafrost in northernmost China, and also the engineering problems are analyzed. Results show that the atmospheric inversion in winter controls the regional permafrost distribution in the study area. Ground surface warmed significantly after vegetation removal because of the runway construction. The maximum temperature difference among the forest, the swamp and the bared gravel can reach to 30 degrees C in summer. Such surface alterations caused abnormally rapid degradation of permafrost within the context of climate warming. The rate of permafrost table deepening varies from 0.461 to 0.590 m/a over the 2007-2017 periods. Also, the annual mean ground temperature at the 13 m depth increased at a rate of 0.054-0.130 degrees C /a. Its annual increase value is 0 similar to 0.47 degrees C with an average 0.108 +/- 0.124 degrees C. In turn, permafrost degradation caused runway safety problems, such as the decrease of bearing capacity, increase of longitudinal slope, decrease of planeness, pavement cracks, density decrease of the foundation and cement concrete pavement cavity. However, in the natural places, the permafrost remained relatively stable and didn't show a continued degradation trend. The permafrost table fluctuated with air temperature changes. Its interannual fluctuation range is 0 similar to 0.25 m, with an average 0.08 +/- 0.08 m. The interannual fluctuation range of ground temperature at the depth of 13 m is 0.01 similar to 0.10 degrees C, with an average 0.06 +/- 0.03 degrees C. In addition, the zero curtain phenomena were observed at the study site. Once the zero curtain periods were over, the ground temperature warmed rapidly. These findings have positive implication for new runway design in permafrost regions.
Climate change has a detrimental impact on permafrost soil in cold regions, resulting in the thawing of permafrost and causing instability and security issues in infrastructure, as well as settlement problems in pavement engineering. To address these challenges, concrete pipe pile foundations have emerged as a viable solution for reinforcing the subgrade and mitigating settlement in isolated permafrost areas. However, the effectiveness of these foundations depends greatly on the mechanical properties of the interface between the permafrost soil and the pipe, which are strongly influenced by varying thawing conditions. While previous studies have primarily focused on the interface under frozen conditions, this paper specifically investigates the interface under thawing conditions. In this study, direct shear tests were conducted to examine the damage characteristics and shear mechanical properties of the soil-pile interface with a water content of 26% at temperatures of -3 degrees C, -2 degrees C, -1 degrees C, -0.5 degrees C, and 8 degrees C. The influence of different degrees of melting on the stress-strain characteristics of the soil-pile interface was also analyzed. The findings reveal that as the temperature increases, the shear strength of the interface decreases. The shear stress-displacement curve of the soil-pile interface in the thawing state exhibits a strain-softening trend and can be divided into three stages: the pre-peak shear stress growth stage, the post-peak shear stress steep drop stage, and the post-peak shear stress reconstruction stage. In contrast, the stress curve in the thawed state demonstrates a strain-hardening trend. The study further highlights that violent phase changes in the ice crystal structure have a significant impact on the peak freezing strength and residual freezing strength at the soil-pile interface, with these strengths decreasing as the temperature rises. Additionally, the cohesion and internal friction angle at the soil-pile interface decrease with increasing temperature. It can be concluded that the mechanical strength of the soil-pile interface, crucial for subgrade reinforcement in permafrost areas within transportation engineering, is greatly influenced by temperature-induced changes in the ice crystal structure.
With the expansion of engineering activities, numerous major projects are gradually emerging in frozen soil regions. However, due to the unique engineering properties of frozen soil, various frozen soil engineering di-sasters have occurred or accelerated under the conditions of global warming, posing a serious threat to the project operation, environmental and ecological protection, and humanity development. This paper summarizes the formation conditions of frozen soil engineering disasters from the perspectives of thermal, hydraulic, and mechanical factors based on existing research. The definition, development trend and characteristics of thawing disaster, frost heaving disaster and freeze-thaw disaster are generalized. The main prevention measures are summarized based on the thermal, hydraulic, and mechanical conditions that cause frozen soil engineering di-sasters. Research suggestions on frozen soil engineering disasters including the engineering disaster mechanism under the frozen soil degradation and multi-hazard risk assessment are proposed. It may provide some references for the harmonious coexistence and sustainable development of engineering construction and geological envi-ronment in frozen soil area.
This paper takes the representative buried structure in permafrost regions, a transmission line tower foundation, as the research object. An inverse prediction is conducted in a scaled-down experimental system mimicking actual heat conduction of the frozen ground in a tower foundation. In permafrost regions, global warming and the heat transfer through the buried structures bring significantly adverse thermal effects on the stability of the infrastructures. In modeling the thermal effects, it has been a challenge to determine the ground surface boundary condition and heat source strength from the buried structures due to the complex climate and environmental conditions. In this work, based on the improved model predictive inverse method with an adaptive strategy, an inverse scheme is successfully implemented to simultaneously identify the time-varying surface temperature and the time-space-dependent heat source representing the buried structures. In this scheme, an adaptive time-varying predictive model is established by the rolling update of the sensitivity response coefficients according to the predicted temperature field to overcome the influence of nonlinear characteristics in the heat transfer process. The inverse method is verified by simulation and experimental data. According to the experimental inversion results, the reconstructed temperature distribution efficiently predicts the thermal state evolution of the permafrost foundation under seasonal freezing and thawing. It is found that, under the experimental conditions, the intensified thawing and freezing are significantly severe, e.g., the increased area ratio of active layer thickness is as high as 28% after building a tower, and the depth of permafrost table ranges from about 14 mm to about 38 mm, which could be detrimental to the stability and safety of the tower foundation. This study will provide valuable guidance for risk assessments or optimizing the design and maintenance of the real tower foundation and similar buried structures.