Non -invasive potato defects detection has been demanded for sorting and grading purpose. Researches on the classification of the defects has been available, however, investigation on the severity level calculation is limited. For the detection of the common scab, it has been found that imaging in the infrared region provide an interesting characteristic that could distinguish defected area to normal area. Thus, investigations on this wavelength range is interesting to add more knowledge and for applications. In this research, the multispectral image has been obtained and investigated especially at three wavelengths (950, 1 150, 1 600 nm). Image pre-processing and pseudo-color conversion techniques were explored to enhance the contrast between defects, normal background skin area and soil deposits. Results show that external defects, such as common scab and some mechanical damage types, appear brighter in the near infrared region, especially at 1600 nm against the normal skin background. It has been found that pseudo-color images conversion provides more information regarding type if surface characteristics compared to grayscale single imaging. Image segmentation using pseudo-color images after multiplication operation preprocessing could be used for common scab and mechanical damage detection excluding soil deposits with a Dice Sorensen coefficient of 0.64. In addition, image segmentation using single image at 1 600 nm shown relatively better results with Dice Sorensen coefficient of 0.72 with note that thick soil deposits will also be segmented. Defect severity level evaluation had an R2 correlation of 0.84 against standard measurements of severity. (c) 2022 China Agricultural University. Production and hosting by Elsevier B.V. on behalf of KeAi. This is an open access article under the CC BY -NC -ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
Since leaving Vera Rubin ridge (VRr), the Mars Science Laboratory Curiosity rover has traversed though the phyllosilicate-bearing region, Glen Torridon, and the overlying Mg-sulfate-bearing strata, with excursions onto the Greenheugh Pediment and Amapari Marker Band. Each of these distinct geologic units were investigated using Curiosity's Mast Camera (Mastcam) multispectral instrument which is sensitive to iron-bearing phases and some hydrated minerals. We used Mastcam spectra, in combination with chemical data from Chemistry and Mineralogy, Alpha Particle X-ray Spectrometer, and Chemistry and Camera instruments, to assess the variability of rock spectra and interpret the mineralogy and diagenesis in the clay-sulfate transition and surrounding regions. We identify four new classes of rock spectra since leaving VRr; two are inherent to dusty and pyroxene-rich surfaces on the Amapari Marker Band; one is associated with the relatively young, basaltic, Greenheugh Pediment; and the last indicates areas subjected to intense aqueous alteration with an amorphous Fe-sulfate component, primarily in the clay-sulfate transition region. To constrain the Mg-sulfate detection capabilities of Mastcam and aid in the analyses of multispectral data, we also measured the spectral response of mixtures with phyllosilicates, hydrated Mg-sulfate, and basalt in the laboratory. We find that hydrated Mg-sulfates are easily masked by other materials, requiring >= 90 wt.% of hydrated Mg-sulfate to exhibit a hydration signature in Mastcam spectra, which places constraints on the abundance of hydrated Mg-sulfates along the traverse. Together, these results imply significant compositional changes along the traverse since leaving VRr, and they support the hypothesis of wet-dry cycles in the clay-sulfate transition. The clay-sulfate transition in Gale crater has long been hypothesized to record an environmental shift from warm and wet to cold and dry. The paleolake that once filled Gale crater allowed phyllosilicates to form. As Mars became cooler and drier, sulfates were able to precipitate above the phyllosilicates. This mineralogic transition has been observed in other places on Mars, implying a global environmental change. Different hydrated Mg-sulfates can reveal characteristics of the paleoenvironment at the time of deposition and thus clarify the geologic history. The goals of this study are to (a) characterize potential sulfate-bearing rocks with the Curiosity rover's multispectral imaging instrument, Mastcam; and (b) constrain Mastcam's Mg-sulfate detection threshold using laboratory techniques. We identify three new rock spectral classes inherent to the clay-sulfate transition and one new class associated with the Greeneheugh pediment. Our laboratory results indicate that it would be challenging to detect Mg-sulfate with Mastcam unless it is nearly pure. New rock spectral classes correspond to unique geologic units. One supports the hypothesis of wet-dry cycles in the clay-sulfate transition Cross instrument analyses imply that Mg- and Fe- sulfates are significant in the amorphous component of the clay-sulfate transition region The spectral signature of hydrated Mg-sulfates in visible to near infrared reflectance spectra are easily masked by phyllosilicates and/or basalt