Landslides are significant geological hazards in mountainous regions, arising from both natural forces and human actions, presenting serious environmental challenges through their extensive damage to properties and infrastructure, often leading to casualties and alterations to the landscape. This study employed GIS-based techniques to evaluate and map the landslide susceptibility in the Bekhair structure located within the Zagros mountains of Kurdistan, northern Iraq. An inventory map containing 282 landslide occurrences was compiled through intensive field investigations, as well as the interpretation of remote sensing data and Google Earth images. Ten potential influencing factors, including elevation, rainfall, lithology, slope, curvature, aspect, LULC, NDVI, distance to roads and rivers, were selected to construct susceptibility maps by integrating the frequency ratio (FR) and analytical hierarchy process (AHP) approaches, with the goal of understanding how these factors relate to landslides occurrence. The Bekhair core area was divided into 5 hazard zones on the landslide susceptibility maps. The regions classified as very low and low hazard zones are mainly occur in flat or gently sloping plains that characterized by resistant rocks, dense vegetation, minimal rainfall, shallow valleys, and are distant from riverbanks and roads. The areas designated as high and very high hazard zones are found in steep slopes and rough terrain with bare soil, intense weathering, high rainfall, sparse vegetation, highly fractured rocks, deep valleys, and close proximity to construction projects. The moderate hazard zones are mainly located between the other 4 zones across the Bekhair anticline. Results of the susceptibility analysis indicate that the occurrence of landslides in Kurdistan mountains are primarily controlled by factors related to the tectonic structure, surface characteristics and environmental conditions, such as rock lithology (competency), terrain slope, rainfall intensity, and human impacts. The delineation of landslide hazard zones offers important guides for government decision-makers engaged in regional planning, infrastructure development, and the formulation of strategies to mitigate landslides and protect lives and properties in Kurdistan. The accuracy of susceptibility maps was evaluated using the R-index and the AUC-ROC curve. The landslide susceptibility index (LSI) values allocated to different susceptibility classes derived from both FR and AHP models are consistent with the values obtained from the R-index. Moreover, the FR model demonstrated superior performance compared to the AHP model, with a success rate of 85.3% and a predictive rate of 81.2%, in contrast to the AHP model's success rate of 75.2% and predictive rate of 72.4%.
The Qinghai-Tibet Plateau (QTP), where is underlain by the highest and most extensive mid-altitude permafrost, is undergoing more dramatic climatic warming than its surrounding regions. Mapping the distribution of permafrost is of great importance to assess the impacts of permafrost changes on the regional climate system. In this study, we applied logistic regression model (LRM) andmulti-criteria analysis (MCA) methods to map the decadal permafrost distribution on the QTP and to assess permafrost dynamics from the 1980s to 2000s. The occurrence of permafrost and its impacting factors (i.e., climatic and topographic elements) were constructed from in-situ field investigation-derived permafrost distribution patterns in 4 selected study regions. The validation results indicate that both LRM and MCA could efficiently map the permafrost distribution on the QTP. The areas of permafrost simulated by LRM and MCA are 1.23 x 10(6) km(2) and 1.20 x 10(6) km(2), respectively, between 2008 and 2012. The LRM and MCA modeling results revealed that permafrost area has significantly decreased at a rate of 0.066 x 10(6) km(2) decade(-1) over the past 30 years, and the decrease of permafrost area is accelerating. The sensitivity test results indicated that LRM did well in identifying the spatial distribution of permafrost and seasonally frozen ground, and MCA did well in reflecting permafrost dynamics. More parameters such as vegetation, soil property, and soil moisture are suggested to be integrated into the models to enhance the performance of both models. (C) 2018 Published by Elsevier B.V.