共检索到 2

The detection and characterization of lunar resources, including water ice, is a key area of interest for a new generation of lunar missions. The electrical properties of water ice in the extremely low frequency range support its detection by means of in-situ permittivity measurements. A new type of miniaturized subsurface permittivity sensor is presented, which is under development for the PROSPECT package on the Luna-27 lander mission. Here, the sensor concept is described, key design features are presented and possible operations modes are introduced. The expected accuracy for measurements of the relative permittivity along the borehole is similar to 10-15% and depends mainly on the accuracy of borehole geometry models. Laboratory test results from a prototype sensor on a water ice/simulant mixture at cryogenic temperatures are presented, demonstrating the capability to detect water ice at 125 K. The improved capabilities of the flight design are discussed, operational modes are explained and alternative electrode configurations for lunar landers and rovers are proposed.

期刊论文 2021-12-01 DOI: 10.1088/1361-6501/ac261a ISSN: 0957-0233

The Moon is an archetypal atmosphere-less celestial body in the Solar System. For such bodies, the environments are characterized by complex interaction among the space plasma, tenuous neutral gas, dust and the outermost layer of the surface. Here we propose the SELMA mission (Surface, Environment, and Lunar Magnetic Anomalies) to study how airless bodies interact with space environment. SELMA uses a unique combination of remote sensing via ultraviolet and infrared wavelengths, and energetic neutral atom imaging, as well as in situ measurements of exospheric gas, plasma, and dust at the Moon. After observations in a lunar orbit for one year, SELMA will conduct an impact experiment to investigate volatile content in the soil of the permanently shadowed area of the Shackleton crater. SELMA also carries an impact probe to sound the Reiner-Gamma mini-magnetosphere and its interaction with the lunar regolith from the SELMA orbit down to the surface. SELMA was proposed to the European Space Agency as a medium-class mission (M5) in October 2016. Research on the SELMA scientific themes is of importance for fundamental planetary sciences and for our general understanding of how the Solar System works. In addition, SELMA outcomes will contribute to future lunar explorations through qualitative characterization of the lunar environment and, in particular, investigation of the presence of water in the lunar soil, as a valuable resource to harvest from the lunar regolith.

期刊论文 2018-07-01 DOI: 10.1016/j.pss.2017.11.002 ISSN: 0032-0633
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页