Potato (Solanum tuberosum L.) cultivation faces significant challenges: highland cultivation leads to soil erosion and fertility degradation, while medium-land cultivation is constrained by suboptimal temperature and humidity conditions. Processing potatoes into starch improves shelf life and economic value, however, native potato starch has limited food applications due to heat sensitivity, high viscosity, and its propensity for retrogradation and syneresis. This study investigated the effects of cultivation altitude and modification methods on the physicochemical and functional properties of potato starch from 'Medians' cultivar, comparing samples from medium-land (765 m above sea level) and highland (1312 m above sea level) locations. Starch modifications included Heat Moisture Treatment (HMT), crosslinking with Monosodium Phosphate (MSP), and a combined treatment (CLM-HMT). A factorial randomized complete block design was employed to analyze physicochemical characteristics, functional properties, and pasting behavior, with statistical significance determined using two-way ANOVA and Duncan's Multiple Range Test (p < 0.05). Results revealed significant effects of cultivation altitude, modification method, and their interaction on starch properties. Highland-grown modified starch exhibited superior characteristics in color properties and thermal stability. Modification methods improved starch thermal stability and minimized retrogradation, with the combined CLM-HMT treatment yielding optimal results. This study provides valuable insights into optimizing potato starch production and modification techniques, contributing to sustainable agriculture and broadening its applications in the food industry.
The volumetric deformation of clayey soils, leading to a reduction in the bearing capacity and serviceability of pavements and building structures, is a major concern during their design, construction, and maintenance. Several approaches are often followed to mitigate the volume expansion and concomitant damage, including removal and replacement, moisture treatment with appropriate compaction protocols, and chemical treatment. During these treatment processes, the in-situ fabric is altered as the natural undisturbed soils are remolded and compacted. Hence, it is crucial to understand the effect of remolding on the volumetric characteristics of clayey soils. To investigate this effect, coefficient of linear extensibility (COLE) tests were conducted on both natural and remolded soil samples. The objective was to evaluate the impact of soil fabric modification on volumetric characteristics such as suction compressibility index (gamma h) and soil water-retention characteristics, i.e., the soil-water characteristic curve (SWCC) of clayey soils. Our findings indicated that remolded soils had approxi-mately 10% to 30 % higher gamma h-values than those of unaltered soils, which can be attributed to changes in porosity. Two distinct mechanistic models were developed using the packing theory concept to link the gamma h-value and SWCC of remolded and natural soils. Finally, an analysis was conducted to compare the potential vertical movement (PVM) of natural and remolded clay soils. This analysis revealed that the remolded soil fabric sub-stantially increased the PVM values, particularly for high-plasticity clay soils. This effect should be considered when assessing the impact of treatment that requires remolding, which substantially alters the soil structure and fabric.