共检索到 2

Local site effects play a vital role in determining the level of structural damage to the structures built on soil. Therefore, correctly determining the underground layer structure and its physical characteristics in the lateral and vertical directions is essential for the geotechnical model. More information and more accurate results will be obtained if the geotechnical model is evaluated multidisciplinary together with geophysical studies, not only based on drilling results. For this purpose, vertical electric sounding, seismic refraction, microtremor, and mechanical drilling techniques were applied within the scope of geotechnical studies in the & Idot;neg & ouml;l district of Bursa. The methods were evaluated together, and the geotechnical cross-sections of the underground were interpreted. In addition, microzonation maps determined from Geophysical parameters were created in the study area. These maps, geotechnical cross-sections, and microtremor data evaluation results predicted how the study area's buildings and soils would behave under dynamic forces such as earthquakes. As a result, the soils in the study area were mainly saturated with water and had weak strength. Existing or newly constructed engineering structures on such soils are predicted from microzonation maps that will damage both the soils and the buildings in a seven-magnitude earthquake.

期刊论文 2024-11-01 DOI: 10.1029/2023EA003460

For the last few decades, for the liquefaction susceptibility assessment of a location, Standard Penetration Test (SPT) based methods have been generally practiced. In this research, the liquefaction potential of Dhaka Metropolitan Development Plan (DMDP) area has been analyzed using three existing Cone Penetration Test (CPT) based methods. CPT (CPTu and SCPT) data have been collected from 546 locations of the DMDP region covering 1530 square kilometer area and have been analyzed to assess the liquefaction potential. Bangladesh is located in the junction of Indian and Eurasian plate, which makes this country vulnerable to earthquakes. A magnitude 7.5 earthquakes and Peak Ground Acceleration (PGA) value of 0.21 g at the surface have been used to evaluate the liquefaction susceptibility of the region using the three CPT-based techniques and another CPT-based technique has been employed to evaluate the liquefaction susceptibility of the region using variable surface PGA based on Modhupur scenario. Liquefaction potential maps have been proposed and compared for these four methods. It has been found that more than 60% of the study area falls within the LPI range which indicates moderate to relatively high liquefaction vulnerability. The liquefaction susceptibility of the three methods has been found to be in agreement and possible reasons of deviation in any particular method have been explained. Also, Ishihara 1985 proposed LPIISH has been estimated and compared with Iwasaki's LPI values. It has been observed that the difference in results using LPI and LPIISH are not significant. The seismic microzonation and liquefaction analyses will help engineers, planners and relevant professionals to get prior idea about the seismic vulnerability of any part of the DMDP region and take measures beforehand to avoid any damaging consequences.

期刊论文 2024-09-01 DOI: 10.1007/s11069-024-06586-1 ISSN: 0921-030X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页