Bengkulu city, located in the western part of Sumatra, is characterized by the prevalence of alluvial deposits. In certain areas, local site effects on soft alluvial sediments such as clay, sand, silt, mud, and gravel can amplify ground movements caused by significant seismic waves. Consequently, a comprehensive site effect study was conducted with closer measurement points to establish a more detailed seismic microzonation. In order to evaluate how the soil reacts to seismic activity, the HVSR method is performed to analyze the ambient soil noise within the study area. Field measurements reveal variations in the predominant frequency (ranging from 0.4 to 16.5 Hz), HVSR amplification (ranging from 0.3 to 12.3), and Kg distribution (ranging from 0.02 to 239.26), respectively. Furthermore, the PGA Kanai method was utilized to estimate soil shear strain (GSS) in the study area, using data from the 2000 Bengkulu-Enggano Earthquake (Mw 7.9) and the 2007 Bengkulu-Mentawai Earthquake (Mw 8.4). The analysis indicated a consistent distribution of Kg values with GSS and PGA values, alongside Modified Mercalli Intensity (MMI) values, exhibiting correlation coefficients greater than 0.9. This suggests that Bengkulu City faces a moderate to high vulnerability to severe damage from earthquakes. The closer examination of HVSR data at finer measurement points aids in identifying exposure to new hazards and contributes valuable insights for formulating regional planning policies centered on disaster risk reduction and enhancing existing strategies in Bengkulu City.
The purpose of seismic microzonation has always been to estimate earthquake ground motion characteristics on the ground surface based on available geological, seismological and geotechnical data. During the early years, mostly geological data and observations from past earthquakes were used to prepare microzonation maps. In more recent years, regional earthquake hazard studies, geotechnical investigations, and site response analysis became more common. The uncertainties in source characteristics, soil profile, soil properties, and the characteristics of the building inventory can be considered as critical issues associated with these analyses. In the first stage, the probabilistic distribution of the related earthquake parameters on the ground surface may be determined considering all possible input acceleration time histories, site profiles, and dynamic soil properties. Generally, to account for the variability in earthquake source and path effects it is suggested to use more than 20 acceleration records compatible with the site-dependent earthquake hazard. Likewise, more or equal to 100 soil profiles generated by Monte Carlo simulations may be used to account for the variability of site conditions. Then the seismic microzonation in a specific area may be based on the probabilistic assessment of these factors in site response analysis. An attempt will be made to briefly review the past, present and possibilities for future studies on microzonation applications.
Comprehensive assessment of liquefaction potential is an important aspect of understanding the liquefaction susceptibility and risk of any region. In India, liquefaction potential assessment (LPA) was carried out as a part of seismic microzonation, and a lot of research work has been reported for major cities/regions. A review of LPA for major cities/regions in India was presented in this study for better understanding of the factors considered in the assessment. In addition, a comprehensive LPA considering the susceptibility, probability, and associated seismic risk on existing structures was evaluated for eight sites in Roorkee region, India. The factor of safety against liquefaction (FSL) and liquefaction potential index (LPI) are evaluated using existing standard penetration test (SPT) data. Also, liquefaction probability (PL) and post-liquefaction settlement (SL) are theoretically estimated to frame a comprehensive LPA. This study is the first of its kind to frame a comprehensive LPA considering both the susceptibility indices (FSL and PL) and liquefaction damage indices (LPI and SL). The results indicate that a high risk of liquefaction and surface manifestations are possible for the selected sites for considered seismic scenario. Fines content and the number of borehole layers are critical in influencing the resistance to liquefaction and surface manifestations. Estimation of SL from SPT N number and volumetric strain approach were found in good agreement with the interpretations obtained from the LPI values. It can be stated that for any design of structures against liquefaction, FSL must be higher than 1.20, as this can be evident from the available literature and the presented case study of Roorkee region.
Bhaktapur, lying in the Kathmandu Basin, suffered damages during the 2015 Gorkha Earthquake, potentially exacerbated by local site effects. This research addresses the lack of site response study on Suryabinayak Municipality, located in the southern part of Bhaktapur district. Horizontal to Vertical Spectral Ratio (HVSR) and Floor Spectral Ratio (FSR) methods were employed to determine the fundamental frequencies of soil deposits at 241 free field stations and 20 Reinforced Concrete (RC) isolated buildings respectively. The fundamental frequency of soil deposits varies from 0.27 Hz to 10.00 Hz. Higher frequencies were noted near the basin edges, attributed to shallow sediment deposits, whereas a lower frequencies prevailed towards the basin centre due to an increase in sediment thickness. Out of 20 buildings studied, 7 are highly susceptible to soil-structure resonance as the frequency disparity between building and free-field is less than 15%. This research not only quantified the frequency distribution and soil-structure resonance likelihood but also established a correlation between building height and its fundamental frequency. A significant correlation is observed with a coefficient of determination (R2) value of 60.64% and 83.36% in the longitudinal and transverse directions respectively. The study's results can be endorsed to mitigate seismic hazards, build seismic-resilient structures, and maintain historical monuments.
Local site effects play a vital role in determining the level of structural damage to the structures built on soil. Therefore, correctly determining the underground layer structure and its physical characteristics in the lateral and vertical directions is essential for the geotechnical model. More information and more accurate results will be obtained if the geotechnical model is evaluated multidisciplinary together with geophysical studies, not only based on drilling results. For this purpose, vertical electric sounding, seismic refraction, microtremor, and mechanical drilling techniques were applied within the scope of geotechnical studies in the & Idot;neg & ouml;l district of Bursa. The methods were evaluated together, and the geotechnical cross-sections of the underground were interpreted. In addition, microzonation maps determined from Geophysical parameters were created in the study area. These maps, geotechnical cross-sections, and microtremor data evaluation results predicted how the study area's buildings and soils would behave under dynamic forces such as earthquakes. As a result, the soils in the study area were mainly saturated with water and had weak strength. Existing or newly constructed engineering structures on such soils are predicted from microzonation maps that will damage both the soils and the buildings in a seven-magnitude earthquake.
The Nilufer district experienced the most recent urbanization among the central districts of Bursa in South Marmara region with the completion of rapid construction. Since 358 BCE, many destructive earthquakes were reported on the branches of the North Anatolian Fault (NAF) which caused extensive damage to buildings and loss of life near Bursa city. Besides some studies conducted to define the soil behavior in the vicinity of Bursa, a seismic hazard study in Nilufer is still lacking. We, therefore, carried out a microzonation study including the following steps. First, an earthquake hazard analysis was conducted and the peak ground acceleration (PGA) values were determined for an expected earthquake. In the next step, MASW (Multi-Channel Analysis of Surface Wave) measurements conducted at 54 points in 28 neighbourhoods of Nilufer district were evaluated. Soil mechanical parameters were determined at 11 boreholes to assess the liquefaction potential. It was found that almost half of the study area suffers from low damage considering only the vulnerability index (Kg) index, which depends on the site effect. Therefore, in addition to the Kg values, we created a microzonation map using the results of soil liquefaction, settlement, changes in groundwater level, and the average values of spectral acceleration. The study area is classified by four damage levels changing from low to high. Using only the Kg index could not quantify the potential damage level in the study area, thus we showed that the districts of Altinsehir, Hippodrome, Urunlu and Alaaddinbey, Ertugrul, 29 Ekim, 23 Nisan, Ahmetyesevi and Minarelicavus were identified at potentially high-risk damage zones. The results of this study clearly showed that considering the Kg index, which depends only on the local site effect, may lead to inadequate damage values.
For the last few decades, for the liquefaction susceptibility assessment of a location, Standard Penetration Test (SPT) based methods have been generally practiced. In this research, the liquefaction potential of Dhaka Metropolitan Development Plan (DMDP) area has been analyzed using three existing Cone Penetration Test (CPT) based methods. CPT (CPTu and SCPT) data have been collected from 546 locations of the DMDP region covering 1530 square kilometer area and have been analyzed to assess the liquefaction potential. Bangladesh is located in the junction of Indian and Eurasian plate, which makes this country vulnerable to earthquakes. A magnitude 7.5 earthquakes and Peak Ground Acceleration (PGA) value of 0.21 g at the surface have been used to evaluate the liquefaction susceptibility of the region using the three CPT-based techniques and another CPT-based technique has been employed to evaluate the liquefaction susceptibility of the region using variable surface PGA based on Modhupur scenario. Liquefaction potential maps have been proposed and compared for these four methods. It has been found that more than 60% of the study area falls within the LPI range which indicates moderate to relatively high liquefaction vulnerability. The liquefaction susceptibility of the three methods has been found to be in agreement and possible reasons of deviation in any particular method have been explained. Also, Ishihara 1985 proposed LPIISH has been estimated and compared with Iwasaki's LPI values. It has been observed that the difference in results using LPI and LPIISH are not significant. The seismic microzonation and liquefaction analyses will help engineers, planners and relevant professionals to get prior idea about the seismic vulnerability of any part of the DMDP region and take measures beforehand to avoid any damaging consequences.
Permafrost in the NE European Russian Arctic is suffering from some of the highest degradation rates in the world. The rising mean annual air temperature causes warming permafrost, the increase in the active layer thickness (ALT), and the reduction of the permafrost extent. These phenomena represent a serious risk for infrastructures and human activities. ALT characterization is important to estimate the degree of permafrost degradation. We used a multidisciplinary approach to investigate the ALT distribution in the Khanovey railway station area (close to Vorkuta, Arctic Russia), where thaw subsidence leads to railroad vertical deformations up to 2.5 cm/year. Geocryological surveys, including vegetation analysis and underground temperature measurements, together with the faster and less invasive electrical resistivity tomography (ERT) geophysical method, were used to investigate the frozen/unfrozen ground settings between the railroad and the Vorkuta River. Borehole stratigraphy and landscape microzonation indicated a massive prevalence of clay and silty clay sediments at shallow depths in this area. The complex refractive index method (CRIM) was used to integrate and quantitatively validate the results. The data analysis showed landscape heterogeneity and maximum ALT and permafrost thickness values of about 7 and 50 m, respectively. The active layer was characterized by resistivity values ranging from about 30 to 100 omega m, whereas the underlying permafrost resistivity exceeded 200 omega m, up to a maximum of about 10 k omega m. In the active layer, there was a coexistence of frozen and unfrozen unconsolidated sediments, where the ice content estimated using the CRIM ranged from about 0.3 - 0.4 to 0.9. Moreover, the transition zone between the active layer base and the permafrost table, whose resistivity values ranged from 100 to 200 omega m for this kind of sediments, showed ice contents ranging from 0.9 to 1.0. Taliks were present in some depressions of the study area, characterized by minimum resistivity values lower than 10 omega m. This thermokarst activity was more active close to the railroad because of the absence of insulating vegetation. This study contributes to better understanding of the spatial variability of cryological conditions, and the result is helpful in addressing engineering solutions for the stability of the railway.