To prevent the cracking of silty clay under cyclic wet-dry cycling (W-D), which leads to the increase of deformation and strength attenuation of silty clay, microencapsulated phase change material (mPCM) was used to improve it. The deformation and strength characteristics of silt with different dosages (1 %, 2 % and 4 %) of mPCM and their changing patterns were analyzed and studied by indoor compaction test, crack observation test, consolidation test and straight shear test, and compared with silt without modifier. The results showed that with the increase of mPCM dosage, the optimum water content of silt and the maximum dry density decreased. A 2 % dosage of mPCM inhibited the development of silty clay cracks, reduced crack width and deformation, and increased the compression modulus of the soil samples by nearly 2.3 times. Under dry and wet cycling conditions, the cohesion decay of silty clay is greater than the angle of internal friction. The addition of 2 % mPCM significantly increased the shear strength of silty clay, cohesion by nearly 2.1 times, and internal friction angle by 1.4 times. The mPCM inhibits crack development mainly by regulating the internal temperature field of soil samples, thus improving soil strength. This study provides a reference for inhibiting soil cracking from a new temperature perspective.
Microencapsulated phase change materials (mPCM) can absorb or release heat by transforming their core phase. This study investigated the effect of mPCM on the thermal and mechanical properties of silty clay in seasonally frozen strata. It analyzed and researched the thermal and mechanical properties of silty clay blended with different contents (2%, 4%, and 6%) of mPCM, as well as its changing rules, using the DSC thermal cycling test, the specific heat capacity test, the freeze -thaw (F -T) cycling test, the no -limit compressive strength test, and the microscope observation test. In addition, this study utilized hyperspectral equipment to assess the applicability of improved silty clay soils in practical engineering on seasonally frozen ground. The results show that mPCM has no supercooling phenomenon and has stable and reversible transformation characteristics, which improves the thermal stability of silt. The specific heat capacity of silt increased with the increase of mPCM dosage. The unconfined compressive strength of silty clay increased to 162.5 kPa at 2% dosage, which was 16.8% higher than that of silty clay, while the unconfined compressive strength of silty clay at 6% dosage decreased to 119.1 kPa, which was 14.4% lower than that of silty clay after freeze -thaw cycles. Adding mPCM reduces the microscopic damage to the pore structure of silty clay soils caused by the freeze -thaw process and mitigates the macroscopic attenuation of their mechanical strength. The mPCM can effectively reduce the solar radiation reflectivity of silty clay, thus providing long-term utility for winter projects.