Microbial-induced calcium carbonate precipitation (MICP) has attracted much attention as a promising technology for soil improvement in the infrastructures of marine engineering. This paper introduces a novel numerical sample preparation technique for MICP-treated sand, with particular attention paid to the distribution patterns of calcium carbonate, including contact cementing, bridging, and grain coating. The effect of calcium carbonate content (CCC) on the deformation and failure mechanism is studied at macroscopic and granular scales. The findings show that a small amount of calcium carbonate can quickly increase the strength of sand. The strength improvement and deformation control of MICP technology are better than those of traditional compaction treatment. As the calcium carbonate content increases, the mechanical coordination number of the sand also increases, indicating a more stable microstructure of the sand phase. In the contact bonding mode, initial failure occurs as shear failure between sand and calcium carbonate. In the bridge mode, initial failure manifests as shear failure between calcium carbonate particles. In the coating mode, initial failure occurs as tensile failure between sand and calcium carbonate. Calcium carbonate contributes to a reduction in both sliding and rolling movements among sand particles.
Expansive soil poses significant challenges for civil engineers, leading to structural damage, particularly in lightly loaded structures. This study employs an innovative and sustainable recipe to stabilize highly expansive soil using the MicrobialInduced Calcium Carbonate Precipitation (MICP) technique by substituting conventional ingredients with olive mill wastewater and hydrated lime. A series of laboratory tests were performed to evaluate the improvement in Atterberg's limits, Free Swell, Unconfined Compressive Strength (UCS), and pH, in addition to a series of qualitative measurements, including X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Optical Microscopic Images, and bacteria growth rate. Different mellowing periods and different cementation concentrations were used. The proposed recipe results showed a 50% reduction in the soil's free swell value. The UCS of the treated soil using the proposed recipe was eight times that of the untreated soil and twice that of the soil treated with the traditional recipe. The SEM images showed flocculation and aggregation in the soil particles, with the voids becoming smaller and filled with calcium carbonate (CaCO3). The XRD results showed the formation of new CaCO3 particles. The optimized recipe demonstrated remarkable enhancement improvement and significant changes in soil physical properties and microstructure.
Microbial-induced calcium carbonate precipitation (MICP) is an emerging in situ grouting technology for sand ground improvement, slope stability, and subgrade reinforcement, featuring rapid implementation and low energy consumption. The precipitated calcium carbonate crystals can rapidly fill and cement sand particles so as to form a new soil structure that effectively reduces liquefaction sensitivity and dynamic damage. The centrifuge shake table test is an effective method for simulating liquefaction of sandy soil layers under shear wave excitation. Many studies have been conducted on this topic in recent years. However, the study on dynamic response, especially the liquefaction resistance of MICP-cemented sands by centrifuge shake table tests, is rare. In order to investigate the cementation effect of microbial treatment, centrifuge shake table tests were performed on two models, i.e., untreated and MICP cemented sand model. The test results indicated that, compared with untreated sand model, the liquefaction resistance of the MICP model was significantly improved in terms of acceleration response, shear stiffness, stress-strain relationship, and ground surface settlement. This study contributes to a better understanding of the mechanical law in the liquefaction process and enriches the engineering application of microbial grouting treatment of sand foundation prone to liquefaction.