共检索到 2

In recent years, there has been an increasing interest in investigating the use of non-traditional additives for stabilizing problematic soils. As the demand for eco-friendly alternatives to cement rises, magnesium chloride, a widely used deicer and dust suppressor, has emerged as a potential choice. This study aims to provide a comprehensive understanding of the microstructural changes that occur and affect the macro behavior of treated bentonite (B) and yellow marl (YM). To achieve this, MgCl2 solution was added to the soils at 3, 6, 9, and 12 percent by dry weight of the soil, and samples were cured for 7, 14, and 28 days at 5 degrees C, 25 degrees C, and 35 degrees C. The mechanical properties of the treated soils were then evaluated using the unconfined compression test, direct shear test, and pressure chamber test (SWCC), while microstructural analysis techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDAX), and Fourier transform infrared spectroscopy (FTIR) were employed to examine the mechanism of MgCl2 stabilization. The results indicate that adding MgCl2 and extending the curing period significantly increased both soils' unconfined compressive strength (UCS). However, the UCS value decreased for treated samples cured at temperatures higher than 25 degrees C due to an incomplete cation exchange process and the reduction of apparent cohesion. A part of the gained strength from apparent cohesion and matric suction in the unsaturated samples was lost when the samples reached full saturation during the direct shear test. Changes in the particle size, pore size, and pore void distribution due to the MgCl2 stabilization affected the SWCCs of the treated soils. Microstructural analyses revealed the formation of magnesium hydration products, such as magnesium silicate hydrate (M-S-H) and magnesium aluminate hydrate (M-A-H), which contributed to the strength increase by increasing grain size, filling the pores, binding fine particles within coarse grains, and forming a flocculated structure through recrystallization of MgCl2 and the formation of cementitious gel. Additionally, for B, adding MgCl2 led to soil flocculation through ion exchange, while for YM, the same process occurred due to the greater surface tension of the saline solution encircling the particles.

期刊论文 2024-05-24 DOI: 10.1016/j.conbuildmat.2024.136318 ISSN: 0950-0618

Freeze-thaw cycles significantly impact construction by altering soil properties and stability, which can lead to delays and increased costs. While soil-stabilizing additives are vital for addressing these issues, stabilized soils remain susceptible to volume changes and structural alterations, ultimately reducing their strength after repeated freeze-thaw cycles. This study aims to introduce a different approach by employing magnesium chloride (MgCl2) as an antifreeze and soil stabilizer additive to enhance the freeze-thaw resilience of clay soils. We investigated the efficiency of MgCl2 solutions at concentrations of 4%, 9%, and 14% on soil by conducting tests such as Atterberg limits, standard proctor compaction, unconfined compression, and freeze-thaw cycles under extreme cold conditions (-10 degrees C and -20 degrees C), alongside microstructural analysis with SEM, XRD, and FTIR. The results showed that MgCl2 reduces the soil's liquid limit and plasticity index while enhancing its compressive strength and durability. Specifically, soil treated with a 14% MgCl2 solution maintained its volume and strength at -20 degrees C, with similar positive outcomes observed for samples treated with 14% and 9% MgCl2 solutions at -10 degrees C. This underlines MgCl2's potential to enhance soil stability during initial stabilization and, most importantly, preserve it under cyclic freeze-thaw stresses, offering a solution to improve construction practices in cold environments.

期刊论文 2024-05-01 DOI: 10.3390/app14104140
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页