共检索到 5

Endophytic and rhizosphere-competent entomopathogenic fungi (EF) are important plant bodyguards, although the mechanisms underlying this phenomenon are poorly understood. Therefore, we aimed to elucidate the roles of antibiosis (lethal and sublethal effects), and potential growth compensation (in response to leaf injury) in melon plants exposed to cotton leafworm. Plants were inoculated with one of three EF strains (EAMa 0158-Su Metarhizium brunneum strain or EABb 04/01-Tip and EABb 01/33-Su Beauveria bassiana strains) by either foliar spray, seed dressing or soil drenching and then challenged with either multiple short-term, or single long-term Spodoptera littoralis larval infestation. Endophytic colonization and relative expression of plant defense genes were tracked using molecular techniques alongside evaluation of antibiosis effects on S. littoralis and plant tolerance to larval-induced leaf injuries. Inoculated plants exhibited antibiosis and potential growth compensation in responses to various S. littoralis challenges, which resulted in increased fresh and dry weight, chlorophyll content, number of secondary branches and stem diameter. Furthermore, up-regulation in the relative expression of ethylene (ACO1, ACO3, EIN2, EIN3) and jasmonic acid (LOX2)-related genes were observed, with the endophytic B. bassiana- induction of ethylene and jasmonic acid production being higher in S. littoralis infested plants. Our findings strongly confirm the EF multifunctionality and the involvement of the Endophytic EF triggered melon defensive system induction in the antibiosis and compensatory growth to protect melon plants from pest damage.

期刊论文 2025-01-01 DOI: 10.1007/s10340-024-01812-y ISSN: 1612-4758

Trap crops and entomopathogenic fungi can provide partial solutions for integrated pest management, by attracting and killing insect pests, respectively, but both solutions have some limitations restricting their practical field applications. Both solutions have been tested against a major soil-borne pest of brassicaceous vegetables, the cabbage root fly Delia radicum. Chinese cabbage is very attractive to this pest, but it is also a high-quality host plant for developing larvae of D. radicum, which limits the application as a trap crop in the field. The entomopathogenic fungus Metarhizium brunneum can infect D. radicum larvae in the soil, but M. brunneum has not proved to be sufficiently effective in reducing damages caused by cabbage root fly. In the present work, we evaluated whether the entomopathogenic fungus M. brunneum can be used to regulate D. radicum populations together with trap crops by inoculating Chinese cabbage and broccoli plants at sowing with M. brunneum colonized rice grains before transplantation of small plants to field soil. The evaluation was performed under natural fly infestation. In both plant treatments, D. radicum infestations were high with no or only moderate effect of the fungus inoculation on the number of larvae and pupae recorded, despite evidence of successful fungal infections. On broccoli plants, our results clearly demonstrated that the M. brunneum application was inefficient in reducing number of D. radicum stages in the soil and resulting plant mortality. However, in the trap crop, Chinese cabbage, M. brunneum inoculation reduced the number of D. radicum imagos emerging from the plants by 36%. Hence, the strategy is likely to have effects on the next D. radicum generation. This result is the first to indicate complementarity between the 'attract' and 'kill' strategies to control pest development inside a favorable trap crop and prevent future pest population outbreaks. Also, from both plant inoculation treatments, some emerging D. radicum imagos developed M. brunneum infection, which may assist the transmission of the entomopathogenic fungus among adult populations.

期刊论文 2024-12-01 DOI: 10.1007/s11829-024-10105-1 ISSN: 1872-8855

In production of cereals like maize ( Zea mays L.) and barley ( Hordeum vulgare L.), seeds are often treated with pesticides and/or commercial products of plant beneficial microorganisms (PBM) to reduce possible root damage from insect pests and soil borne root diseases. In a field experiment with maize and barley under conservation agriculture, we examined how such seed treatments affected the resident root and soil microbiota. The seed treatments included a pesticide mixture and different commercial products of common PBM based on the biocontrol agents (BCA) Trichoderma harzianum and Metarhizium anisopliae alone and in combination and a mix of plant growth promoting rhizobacteria (PGPR), which were compared to a negative control without seed treatment. Soil and root samples were taken at two and three sampling times during the crop cycles for barley and maize, respectively, to measure root biomass, root colonization with mycorrhizal fungi and pathogens, soil microbial communities at a general taxonomic level using biomarker fatty acids, and ecological guilds of soil nematodes. Root health was monitored with observations of the presence of insect feeding larvae and root disease symptoms, which in general showed healthy roots during the full crop cycle. Overall, most of the root and soil biota variables measured changed during the crop cycle. However, for both crops, the seed treatments had no effects on the soil and root microbiota measured, except in the case of barley root infection with Polymyxa sp., which was reduced by all treatments. In conclusion, the pesticide and PBM seed treatments evaluated in the present study for maize and barley under conservation agriculture, in general, had limited effects on the resident root and soil microbiota. However, future studies should include complementary high-resolution sequencing methods when examining non-target effects of pesticides and microbial inoculants on the root and soil microbiota.

期刊论文 2024-09-01 DOI: 10.1016/j.ejsobi.2024.103653 ISSN: 1164-5563

Plants face many environmental challenges and have evolved different strategies to defend against stress. One strategy is the establishment of mutualistic associations with endophytic microorganisms which contribute to plant defense and promote plant growth. The fungal entomopathogen Metarhizium robertsii is also an endophyte that can provide plant-protective and growth-promoting benefits to the host plant. We conducted a greenhouse experiment in which we imposed stress from deficit and excess soil moisture and feeding by larval black cutworm (BCW), Agrotis ipsilon, to maize plants that were either inoculated or not inoculated with M. robertsii (Mr). We evaluated plant growth and defense indicators to determine the effects of the interaction between Mr, maize, BCW feeding, and water stress. There was a significant effect of water treatment, but no effect of Mr treatment, on plant chlorophyl, height, and dry biomass. There was no effect of water or Mr treatment on damage caused by BCW feeding. There was a significant effect of water treatment, but not Mr treatment, on the expression of bx7 and rip2 genes and on foliar content of abscisic acid (ABA), 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and gibberellin 19 (GA19), whereas GA53 was modulated by Mr treatment. Foliar content of GA19 and cis-Zeatin (cZ) was modulated by BCW feeding. In a redundancy analysis, plant phenology, plant nutrient content, and foliar DIMBOA and ABA content were most closely associated with water treatments. This study contributes toward understanding the sophisticated stress response signaling and endophytic mutualisms in crops.

期刊论文 2024-07-01 DOI: 10.3390/pathogens13070544

Fall armyworm, Spodoptera frugiperda is an invasive polyphagous pest and has annually invaded Korea since it was first reported in 2019. This pest has already acquired resistance to synthetic chemical pesticides. To minimize the damage caused by S. frugiperda, alternative control methods with different mode of action should be developed. In this study, we assessed the virulence of native entomopathogenic fungi against S. frugiperda and investigated application methods to effectively control the target insect. We obtained 93 fungal isolates and assayed their pathogenicity against second instar larvae. Of the 93 isolates, 34 isolates caused high mortality. Based on their virulence, conidial productivity, and thermotolerance, ten isolates were selected for quantitative bioassays. In the bioassays using leaf dipping, all isolate treatments showed high virulence against second instar larvae, but only two isolates, Beauveria bassiana JEF-492 and Sf83 caused 93.3% and 86.7% mortality against fourth instar larvae, respectively. Given the soil-dwelling pupal stage, drenching the soil with Metarhizium anisopliae JEF-157 and B. bassiana JEF-492 from the selected isolates reduced the survival rate of pupae by up to 80% under laboratory conditions. The M. anisopliae JEF-157 and B. bassiana JEF-492 cultured on barley and rice showed high conidial productivity and thermotolerance. Our results show that soil application of M. anisopliae JEF-157 and B. bassiana JEF-492 targeting pupal stage could be effectively combined with the spray on the leaf-dwelling larval stage when the isolates encounter unfavorable abiotic stress on the leaves.

期刊论文 2024-03-01 DOI: 10.1016/j.aspen.2023.102193 ISSN: 1226-8615
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页