Lead (Pb), a prevalent heavy metal contaminant in aquatic environments, has complex effects on the gut microbiome function of aquatic animals. In this study, metagenomic analysis of Bufo gargarizans tadpoles was carried out following Pb exposure. Moreover, histological analysis was performed on the intestines. The results showed that Pb exposure induced histological damage to the intestinal epithelium. Significant differences in microbial abundance and function were detected in the 200 mu g/L Pb group compared to the control group. Specifically, an increase in Bosea and Klebsiella was noted at 200 mu g/L Pb, which potentially could induce inflammation in tadpoles. Notably, the decrease in the abundance of glycoside hydrolases subsequent to exposure to 200 mu g/L Pb is likely to attenuate carbohydrate metabolism. Furthermore, increased fluoroquinolone-related antibiotic resistance genes (ARGs), phenolic-related ARGs, and iron uptake systems following 200 mu g/L Pb exposure might heighten the disease risk for tadpoles. These discoveries augment our comprehension of the influences of Pb on the intestinal well-being of amphibians and offer valuable insights for further assessment of the ecological risks that Pb poses to amphibians.
Excessive phosphorus emissions can result in the eutrophication of water bodies, causing severe environmental damage as well as influencing the efficiency of water treatment equipment. The impacts of carbon/phosphorus ratios on performance and mechanism of the upflow anaerobic sludge bed reactor remain unclear. Henrie, the effects of different carbon/phosphorus ratios (i.e., 80:1, 40:1, and 20:1) on the transformation of phosphorus in the biological treatment process of an upflow anaerobic sludge blanket (UASB) reactor were studied. The results showed that phosphines are of great importance in the phosphate reduction process. After a stable operation, the phosphine reached the highest 81.91 mg/m3 at a C/P ratio of 40:1. It was proved that the optimum operating condition of the reactor was carbon to phosphorus ratio of 40:1. Phosphate-reducing bacteria were present in the UASB reactor, and the relative abundance of Clostridia in the sludge was 1.90 % and 1.59 % when the C/P was 80:1 and 20:1, respectively. This implied that the low carbon to phosphorus ratio reduces the phosphorusreducing microbial activity in the reactor. Lower C/P values could inhibit the uptake and use of P in the phosphonate transport system and the transport of phosphate in the cell by the microbial Pst system, impeding the mineralization of organophosphates. The study provides new insights into improving the efficiency of treating phosphorus-rich wastewater.
Geopolymer concrete is a promising alternative to traditional cement due to its lower carbon footprint and enhanced mechanical properties. While carbonatogenic bacteria have been widely studied in Portland cement, their role in geopolymers remains underexplored, particularly in noncalcium precipitation mechanisms. This study screened limestone quarry samples using 16S amplicon sequencing to identify potential carbonatogenic bacteria. Following isolation and precipitation analysis, Lysinibacillus fusiformis JH2 was selected and incorporated into fly ash-bottom ash-based geopolymer paste. XRD and SEM analysis revealed that microbial carbonation led to the formation of aragonite, natrite, and brucite, refining pore structures, enhancing durability, and increasing compressive strength. Incorporating JH2 endospores significantly improved early strength, achieving 17.5 MPa within 7 days, meeting Indonesian structural standards, and increasing strength by up to 166 %. Notably, bacteria remained viable and retained their ability to form endospores, opening possibilities for endospore storage in artificial aggregates for selfhealing and bio-enhanced construction materials. These findings also show a potentially novel microbial pathway for non-calcium precipitation, contributing to the faster, more sustainable enhancement of geopolymer concrete for industrial applications.
The damage caused by soil-borne diseases in Cunninghamia lanceolata (Lamb.) Hook (Cupressaceae), commonly called the Chinese fir, has become increasingly severe in China in recent years. Due to the strong seasonal dependence of the occurrence and severity of these diseases, the ecological processes influencing changes in the composition and function of the plant microbiome during different seasons of pathogen infection have been rarely studied. This study compared the seasonal variations in soil physicochemical properties between the rhizosphere soils of healthy and diseased C. lanceolata in major production areas in China. It further explored the effects of root rot on the composition, structure, and ecological functions of rhizosphere microorganisms. The results demonstrated that seasonal variations significantly influenced the physicochemical properties and microbial composition of the rhizosphere soil in C. lanceolata affected by root rot. Microbiome analysis further confirmed that, within the same season, healthy C. lanceolata contained a greater abundance of ecologically beneficial microbial taxa in the rhizosphere soil compared to diseased trees. These microorganisms may function as bioprotectants. This study enhances our understanding of the structural and functional changes in the rhizosphere soil microbiome associated with soil-borne diseases and provides potential ecological management strategies to improve plant resistance to root rot.
Background and AimsMicroorganisms are essential for carbon and nitrogen cycling in the active layer of permafrost regions, but the distribution and controlling factors of microbial functional genes across different land cover types and soil depths remain poorly understood. This gap hinders accurate predictions of carbon and nitrogen cycling dynamics under climate change. This study aims to explore how land cover type and soil depth influence microbial functional gene distribution in the Qinghai-Tibet Plateau's permafrost regions.MethodsSoil samples (0-50 cm) were collected from alpine wet meadows, alpine meadows, and alpine steppes. We analyzed the samples for physicochemical properties, microbial amplicon sequencing, and metagenomic sequencing. Correlation analyses were conducted between microbial community structure, functional genes, and environmental factors to identify the drivers of microbial carbon and nitrogen cycling.ResultsBacterial richness was 6.03% lower in steppe soils compared to wet meadow soils. Steppe soils exhibited the highest aerobic respiration potential, while deeper wet meadow soils had enhanced anaerobic carbon fixation potential and a higher abundance of carbon decomposition-related genes. Nitrogen assimilation was highest in steppe surface soils, whereas denitrification and ammonification were greatest in wet meadow soils. Carbon cycling potential was influenced by total soil carbon, nitrogen, phosphorus, and belowground biomass, while nitrogen cycling was driven by belowground biomass, soil moisture, and pH.ConclusionOur findings underscore the role of environmental factors in microbial functional gene distribution, providing new insights for modeling carbon and nitrogen cycling in alpine permafrost ecosystems under climate change.
The microbiota, a component of the plant holobiont, plays an active role in the response to biotic and abiotic stresses. Nowadays, with recurrent drought and global warming, a growing challenge in viticulture is being addressed by different practices, including the use of adapted rootstocks. However, the relationships between these practices, abiotic stress and the composition and functions of the rhizosphere microbiota remain to be deciphered. This study aimed to unravel the impact of five rootstocks, water management and the combination of both on the rhizosphere bacterial microbiota in grapevines using shotgun metagenomics approach. The results showed that drought impacted the diversity, composition and functionality of the rhizosphere bacterial community. The genera Mycolicibacterium, Mycobacterium and Rhodococcus, and the bacterial functions, including DNA damage repair, fatty acid synthesis, sugar and amino acid transport, oxidative stress reduction, toxin synthesis and detoxification of exogenous compounds were significantly enriched under drought conditions. Rootstocks also significantly affected the rhizosphere bacterial richness but its influence on diversity and functionality compared to water management was weaker. Some taxa and function could be linked to water managements applied. The interaction between rootstocks and water management further influenced the rhizosphere composition, especially under drought conditions, where distinct clustering was observed for specific rootstocks. The results highlight the importance of conducting multifactorial studies to better understand their impact on shaping functional rhizosphere bacterial communities. This study paves the way for future research on beneficial bacterial inoculation and genetic engineering of rootstock to cope with drought stress.
The toxic effects of tetracycline and glyphosate on hulless barley and its environment, as well as their interrelationship, remain poorly understood. The present study aimed to identify biomarkers reflective of tetracycline and glyphosate toxicity, examine root damage and rhizosphere bacterial communities throughout the growth cycle, and assess the final grain quality. Results indicated that the hydrogen peroxide (H2O2) content in the underground parts of barley could serve as a sensitive biomarker for detecting tetracycline and glyphosate toxicity in barley. In addition, a synergistic effect between 5 mg/kg tetracycline and 5 mg/kg glyphosate was observed at the tillering stage, which not only induced H2O2 accumulation across all growth stages but also ultimately reduced seed quality. During the tillering phase, Proteobacteria dominanted, while Actinobacteria showed greater relative abundance during the jointing stage.By the ripening stage, Acidobacteria predominantly colonized the associated soils. Importantly, the study further identified metagenome-assembled genomes containing cytochrome P450 fragments capable of metabolizing these compounds. This study provides novel insights into the transformation of co-contaminants and the adaptive responses of rhizobacteria to tetracycline and glyphosate exposure, offering valuable information for agricultural practices.
Soil organic carbon (SOC) rapidly accumulates during ecosystem primary succession in glacier foreland. This makes it an ideal model for studying soil carbon sequestration and stabilization, which are urgently needed to mitigate climate change. Here, we investigated SOC dynamics in the Kuoqionggangri glacier foreland on the Tibetan Plateau. The study area along a deglaciation chronosequence of 170-year comprising three ecosystem succession stages, including barren ground, herb steppe, and legume steppe. We quantified amino sugars, lignin phenols, and relative expression of genes associated with carbon degradation to assess the contributions of microbial and plant residues to SOC, and used FT-ICR mass spectroscopy to analyze the composition of dissolved organic matter. We found that herbal plant colonization increased SOC by enhancing ecosystem gross primary productivity, while subsequent legumes development decreased SOC, due to increased ecosystem respiration from labile organic carbon inputs. Plant residues were a greater contributor to SOC than microbial residues in the vegetated soils, but they were susceptible to microbial degradation compared to the more persistent and continuously accumulating microbial residues. Our findings revealed the organic carbon accumulation and stabilization process in early soil development, which provides mechanism insights into carbon sequestration during ecosystem restoration under climate change.
Plants exert a profound influence on their rhizosphere microbiome through the secretion of root exudates, thereby imparting critical effects on their growth and overall health. The results unveil that japonica rice showcases a remarkable augmentation in its antioxidative stress mechanisms under Cd stress. This augmentation is characterized by the sequestration of heavy metal ions within the root system and the prodigious secretion of a spectrum of flavonoids, including Quercetin, Luteolin, Apigenin, Kaempferide, and Sakuranetin. These flavonoids operate as formidable guardians, shielding the plant from oxidative damage instigated by Cd-induced stress. Furthermore, the metagenomic analyses divulge the transformative potential of flavonoids, as they induce profound alterations in the composition and structural dynamics of plant rhizosphere microbial communities. These alterations manifest through the recruitment of plant growth-promoting bacteria, effectively engineering a conducive milieu for japonica rice. In addition, our symbiotic network analysis discerns that flavonoid compounds significantly improved the positive correlations among dominant species within the rhizosphere of japonica rice. This, in turn, bolsters the stability and intricacy of the microenvironmental ecological network. KEGG functional analyses reveal a notable upregulation in the expression of flavonoid functional genes, specifically cadA, cznA, nccC, and czrB, alongside an array of transporters, encompassing RND, ABC, MIT, and P-ATPase. These molecular orchestrations distinctly demarcated the rhizosphere microbiome of japonica rice, markedly enhancing its tolerance to Cd-induced stress. These findings not only shed light on the establishment of Cd-resistant bacterial consortia in rice but also herald a promising avenue for the precise modulation of plant rhizosphere microbiomes, thereby fortifying the safety and efficiency of crop production.
Panax ginseng C.A. Meyer, known as the King of Herbs, has been used as a nutritional supplement for both food and medicine with the functions of relieving fatigue and improving immunity for thousands of years in China. In agricultural planting, soil environments of different geographical origins lead to obvious differences in the quality of ginseng, but the potential mechanism of the differences remains unclear. In this study, 20 key differential metabolites, including ginsenoside Rb1, glucose 6-phosphate, etc., were found in ginseng from 10 locations in China using an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS)-untargeted metabolomics approach. The soil properties were analyzed and combined with metagenomics technology to explore the possible relationships among microbial elements in planting soil. Through Spearman correlation analysis, it was found that the top 10 microbial colonies with the highest abundance in the soil were significantly correlated with key metabolites. In addition, the relationship model established by the random forest algorithm and the quantitative relationship between soil microbial abundance and ginseng metabolites were successfully predicted. The XGboost model was used to determine 20(R)-ginseng Rg2 and 2 '(R)-ginseng Rg3 as feature labeled metabolites, and the optimal ginseng production area was discovered. These results prove that the accumulation of metabolites in ginseng was influenced by microorganisms in the planting soil, which led to geographical differences in ginseng quality.