Soil-rock mixtures are composed of a complex heterogeneous medium, and its mechanical properties and mechanism of failure are intermediate between those of soil and rock, which are difficult to determine. To consider the influence of different particle groups on soil-rock mixture's shear strengths, based on the mesomotion properties of the particles of different particle groups when the soil-rock mixture is deformed, it is classified into two-phase composites, matrix and rock mass. In this paper, based on the representative volume element model of soil-rock mixtures and the Eshelby-Mori-Tanaka equivalent contained mean stress principle, a model of shear constitutive of the accumulation considering the mesoscopic characteristics of the rock is established, the influence of different factors on the shear strength of the accumulation is investigated, and the mesoscopic strengthening mechanism of the rock on the shear strength of the accumulation is discussed. The results show that there is a positive correlation between the rock content, the surface roughness of the rock, the stress concentration coefficient, coefficient of average shear displacement, and the accumulation's shear strength. When the accumulation is deformed, it stores or releases additional energy than the pure soil material, so it shows an increase in deformation resistance and shear strength on a macroscopic scale.
This study examines how acid rain affects the microstructure and mechanical properties of cement-amended loess, crucial for ensuring the safety of engineering projects. We aimed to investigate how acid rain influences the micro-mechanical behavior of cement-amended loess and its damage characteristics under combined acid rain and loading conditions. Cement-amended loess samples were exposed to artificial acid rain with varying pH levels, and changes in their strength and microstructure were analyzed using unconfined compression tests, SEM, NMR, and XRD techniques. Our findings reveal that acid rain erosion of cement-amended loess triggers hydration and erosion reactions. As acid rain concentration increases, the unconfined compressive strength of the amended soil gradually decreases, accompanied by an expansion of pore spaces from small to large-medium pores. Additionally, particle contacts shift from face-to-face and side-to-side to point-to-point and side-to-side configurations. Furthermore, prolonged erosion time exacerbates pore space expansion, indicating a time-dependent effect on soil integrity. To characterize these effects, we developed a constitutive equation within the framework of damage mechanics that incorporates both erosion and loading. This equation successfully aligns with experimental data, providing a comprehensive understanding of the coupled effects of acid rain erosion and mechanical loading on cement-amended loess. These insights are pivotal for designing resilient engineering solutions in environments prone to acid rain erosion.