共检索到 3

Soil biocementation through microbially induced carbonate precipitation (MICP) is a promising technique for improving soil behavior in a nondisruptive manner, particularly for rehabilitation and retrofitting applications. Previous studies characterizing the shear behavior of biocemented soils have concentrated on poorly graded sands, whereas research on well-graded gravelly soils, which are extensively used in shallow geotechnical structures, has been lacking. Mohr-Coulomb strength parameters have been predominately employed to interpret the macromechanical effects of biocementation, but the previously reported findings show significant contradictions. In this study, a well-graded aggregate, representative of commonly used well-graded gravelly soils, was biocemented and subjected to monotonic drained triaxial compression. The test results show remarkable improvements in shear behavior, with the observed changes in stress-strain responses, strength and stiffness development, and stress dilatancy agreeing with those reported for biocemented sands as well as conventional cemented soils. Relatively low cementation levels can effectively rectify the mechanical performance caused by poor compaction to that seen at optimal levels, demonstrating the feasibility and potential of biocementation for improving soils of this type. Detailed analysis of the results reveals the decisive role of cementing bonds and their degradation in causing behavioral changes at different shearing stages. The theories of bonded structure and force-chain evolution are used to explain the preyielding observations, while an analytical approach capable of quantifying the evolution of different strength components is presented for postyielding macromechanical characterization. Conversely to the inference drawn from the strength parameters, the largest improvement is found in the frictional rather than the dilative and cohesive components of strength. Further analysis reveals the commonality of the macromechanical effects of biocementation, density, and confinement, and a unique relationship between macromechanical composition and peak stress ratio emerges.

期刊论文 2024-08-01 DOI: 10.1061/JGGEFK.GTENG-12091 ISSN: 1090-0241

This study presents a simple, yet robust testing methodology employed for investigating the mechanical behaviour of soils under cyclic loading conditions. Small cylindrical specimens of soil (10.5 mm diameter and 35.0 mm high) were subjected to oscillatory torsional loading in either strain sweep or stress sweep mode using the dynamic shear rheometer. Key mechanical properties, including dynamic shear modulus, phase angle, and energy dissipation capacity, were obtained and used to effectively identify threshold strain levels which differentiated the linear, nonlinear, and damage response of the soil. This study further applied the proposed method to stabilized soils to evaluate the effects of stabilizers on improving soil stiffness, while also considering their potential effects on increasing soil brittleness, which could ultimately lead to reduced resistance to fatigue cracking. The successful development of this testing protocol has the potential to evolve into a specification-type method due to its efficiency, repeatability, sensitivity, and fundamental robustness.

期刊论文 2024-05-27 DOI: 10.1080/19386362.2024.2397710 ISSN: 1938-6362

Loess exhibits poor engineering properties, such as low strength and poor water stability. Conventional materials used for improving loess, such as cement and lime, result in environmental pollution issues throughout their production and application processes. To assess the efficacy of bio-based materials, including calcium alginate (CA), xanthan gum (XA), cotton fibers (CO) and flax fibers (FA) in the treatment of loess, the improved soil's strength, disintegration, and water resistance were examined. Subsequently, an optimal amendment approach was determined, and dry -wet cycle tests and microscopic observation were performed. The results show that 1.0 % calcium alginate can effectively enhance the strength of loess, significantly improving its resistance to disintegration with almost no observable disintegration; permeability is significantly reduced, and water repellency is enhanced. 2.0 % xanthan can improve the strength and disintegration resistance of loess, but the improvement in strength is lower than that of calcium alginate. Additionally, the improved soil with XA experiences a flocculent disintegration in static water, which cannot maintain the soil structure. Cotton fibers and flax fibers can enhance both compressive and tensile strength of the soil. The content of 0.45 % flax fibers is considered the optimal choice as it has no effect on water stability. Combining the above results, the combination of 1.0 % CA and 0.45 % FA has been selected to improve the loess, which effectively improves the comprehensive mechanical properties and water stability of the composite improved soil. The decrease in strength and mass loss rate are significantly reduced after dry -wet cycle tests. Microscopic tests show that calcium alginate connects soil particles by Ca2+ ionic bridges, which allows the cementing materials to fill the loess pores and exert the role of agglomeration and coagulation to enhance the integrity of the loess. This study shows that the bio-based material with calcium alginate as the main body can effectively improve the mechanical strength and water stability of the loess.

期刊论文 2024-04-15 DOI: 10.1016/j.scitotenv.2024.171111 ISSN: 0048-9697
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页