共检索到 22

Glacial changes are crucial to regional water resources and ecosystems in the Sawir Mountains. However, glacial changes, including the mass balance and glacial meltwater of the Sawir Mountains, have sparsely been reported. Three model calibration strategies were constructed including a regression model based on albedo and in-situ mass balance of Muz Taw Glacier (A-Ms), regression model based on albedo and geodetic mass balance of valley, cirque, and hanging glaciers (A-Mr), and degree-day model (DDM) to obtain a reliable glacier mass balance in the Sawir Mountains and provide the latest understanding in the contribution of glacial meltwater runoff to regional water resources. The results indicated that the glacial albedo reduction was significant from 2000 to 2020 for the entire Sawir Mountains, with a rate of 0.015 (10a)- 1, and the spatial pattern was higher in the east compared to the west. Second, the three strategies all indicated that the glacier mass balance has been continuously negative during the past 20 periods, and the average annual glacier mass balance was -1.01 m w.e. Third, the average annual glacial meltwater runoff in the Sawir Mountains from 2000 to 2020 was 22 x 106 m3, and its

期刊论文 2024-09-20 DOI: 10.1016/j.scitotenv.2024.173703 ISSN: 0048-9697

The southeastern Tibetan Plateau (SETP), which hosts the most extensive marine glaciers on the Tibetan Plateau (TP), exhibits enhanced sensitivity to climatic fluctuations. Under global warming, persistent glacier mass depletion within the SETP poses a risk to water resource security and sustainability in adjacent nations and regions. This study deployed a high-precision ICESat-2 satellite altimetry technique to evaluate SETP glacier thickness changes from 2018 to 2022. Our results show that the average change rate in glacier thickness in the SETP is -0.91 +/- 0.18 m/yr, and the corresponding glacier mass change is -7.61 +/- 1.52 Gt/yr. In the SETP, the glacier mass loss obtained via ICESat-2 data is larger than the mass change in total land water storage observed by the Gravity Recovery and Climate Experiment follow-on satellite (GRACE-FO), -5.13 +/- 2.55 Gt/yr, which underscores the changes occurring in other land water components, including snow (-0.44 +/- 0.09 Gt/yr), lakes (-0.06 +/- 0.02 Gt/yr), soil moisture (1.88 +/- 1.83 Gt/yr), and groundwater (1.45 +/- 0.70 Gt/yr), with a closure error of -0.35 Gt/yr. This demonstrates that this dramatic glacier mass loss is the main reason for the decrease in total land water storage in the SETP. Generally, there are decreasing trends in solid water storage (glacier and snow) against stable or increasing trends in liquid water storage (lakes, soil moisture, and groundwater) in the SETP. This persistent decrease in solid water is linked to the enhanced melting induced by rising temperatures. Given the decreasing trend in summer precipitation, the surge in liquid water in the SETP should be principally ascribed to the increased melting of solid water.

期刊论文 2024-03-01 DOI: 10.3390/rs16061048

Extreme heat events in the summer of 2022 were observed in Eurasia, North America and China. Glaciers are a unique indicator of climate change, and the European Alps experienced substantial glacier mass loss as a result of the conditions in 2022, which prompted a wide range of community concerns. However, relevant findings for glaciers in China have not been currently reported. Here, we document the response of Urumqi Glacier No. 1 in the eastern Tien Shan to the extreme heat observed in 2022 based on in situ measurements that span more than 60 years. In 2022, Urumqi Glacier No. 1 exhibited the second largest annual mass loss on record, and the summer mass balance was the most negative on record. The hottest summer on record and relatively lower solid precipitation ratio contributed to the exceptional mass losses at Urumqi Glacier No. 1 in 2022, demonstrating the significant influence of heatwaves on extreme glacier melt in China.

期刊论文 2024-01-01 DOI: http://dx.doi.org/10.1017/jog.2024.4 ISSN: 0022-1430

The detailed physical processes involved in slowing glacier ablation by material cover remain poorly understood so far. In the present study, using the snow cover model SNOWPACK, the effect of geotextile cover on the energy and mass balance at the tongue of the Urumqi Glacier No. 1 (Chinese Tien Shan) was simulated between July 12, 2022 and August 31, 2022. The mass changes and the energy fluxes with and without material cover were compared. The results indicated that the geotextile covering reduced glacier ablation by approximately 68% compared to the ablation in the uncovered regions. The high solar reflectivity of the geotextile reduced the net short-wave radiation energy available for the melt by 45%. Thermal insulation of the geotextile reduced the sensible heat flux by 15%. In addition, the wet geotextile exerted a cooling effect through long-wave radiation and negative latent heat flux. This cooling effect reduced the energy available for ablation by 20%. Consequently, only 37% of the energy was used for melting compared to that used in the uncovered regions (67%). Sensitivity experiments revealed that the geotextile cover used at a thickness range of 0.045-0.090 m reduced the ice loss by approximately 68%-72%, and a further increase in the thickness of the geotextile cover led to little improvements. A higher temperature and greater wind speed increased glacier ablation, although their effects were small. When the precipitation was set to zero, it led to a significantly increased melt. Overall, the geotextile effectively protected the glacier tongue from rapid melting, and the observed results have provided inspiration for developing an effective and sustainable approach to protect the glaciers using geotextile cover.

期刊论文 2023-12-01 DOI: http://dx.doi.org/10.1016/j.accre.2023.11.001 ISSN: 1674-9278

Glacier mass balance and its sensitivity to climate change depend to a large degree on the albedo and albedo feedback. Although recent increasing studies reconstruct the annual surface mass balance (SMB) based on the relationships between satellite-derived minimum albedo and annual glaciological mass balance (so-called albedo method), a relationship remains conjectural for Tien Shan glaciers. Accumulation and ablation occur simultaneously in summer, causing different surface processes. We examine this relationship using glaciological mass-balance data and the equilibrium-line altitude (ELA) made on the eastern branch of Urumqi Glacier No. 1 (UG1-E), Tuyuksu, Golubin and Glacier No. 354, and ablation-season (May-September) albedo retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) images from 2000 to 2021. Compared with minimum ablation-season albedo, we find higher coefficients of determination between mean ablation-season albedo and glaciological mass balance at UG1-E and Tuyuksu. In contrast, for Golubin and Glacier No. 354, glaciological mass balance is higher correlated to minimum ablation-season albedo than mean ablation-season albedo. This difference is related to the glaciological mass-balance time period. The relationship between albedo and glaciological mass balance is obtained over a shorter time for Golubin (8 years) and Glacier No. 354 (9 years) than for UG1-E (20 years) and Tuyuksu (20 years). Nonetheless, based on the correlativity between MODIS-derived mean ablation-season albedo and minimum ablation-season albedo and glaciological mass balance of Golubin and Glacier No. 354 over the 2011-2019 period, the annual SMB for these glaciers can be reconstructed using the albedo method over the period 2000-2010. Comparison with previously reconstructed results indicated that the mass balance derived from albedo is robust for Glacier No. 354, while for Golubin, the results derived from the albedo method only captured the relative changes in mass balance. The current study suggested that ablation-season albedo can be regarded as a proxy for annual mass balance, and mean ablation-season albedo may be more reliable than minimum ablation-season albedo for some Tien Shan glaciers.

期刊论文 2023-03-03 DOI: http://dx.doi.org/10.3389/feart.2023.974739

As an icon of anthropogenic climate change, alpine glaciers are highly sensitive to climate change. However, there remain research gaps regarding trends in climate extremes in glacierized regions and their relationship with local glacier mass balance. In this study, these re-lationships and their underlying links were explored in a typical glacierized region in the Eastern Tianshan Mountains, China, from 1959 to 2018. All warm extremes exhibited increasing trends that intensified dramatically from the 1990s. Meanwhile, decreasing trends were found for all cold extremes except for the temperatures of the coldest days and coldest nights. All of the precipitation extremes demonstrated increasing trends, except for consecutive dry days and consecutive wet days. Statistically significant positive/negative correlations were detected between glacier mass balance and six warm extremes (TN90p, TX90p, SU99p, TR95p, TXx, and TNx)/four cold extremes (TN10p, TX10p, FD0, and ID0). Simulation results showed that the impact of the intensity/frequency of the warm extremes (TN90p, TX90p, SU99p, and TR95p) on glacier ablation was remarkable and the effect of the cold extremes (FD0 and ID0) on accumulation was also significant. Additionally, the increases in the intensity and frequency of most climate extremes seemed more remarkable in glacierized regions than in non-glacierized regions. Hence, studies on glacier-climate interactions should focus greater attention on the impacts of climate extremes on glacier evolution.

期刊论文 2022-12-01 DOI: http://dx.doi.org/10.1016/j.accre.2022.10.006 ISSN: 1674-9278

In this study, energy and mass balance is quantified using an energy balance model to represent the glacier melt of Urumqi Glacier No. 1, Chinese Tian Shan. Based on data from an Automatic Weather Station (4025 m a.s.l) and the mass balance field survey data nearby on the East Branch of the glacier, the COupled Snowpack and Ice surface energy and Mass balance model (COSIMA) was used to derive energy and mass balance simulations during the ablation season of 2018. Results show that the modeled cumulative mass balance (-0.67 +/- 0.03 m w.e.) agrees well with the in-situ measurements (-0.64 +/- 0.16 m w.e.) (r(2) = 0.96) with the relative difference within 5% during the study period. The correlation coefficient between modeled and observed surface temperatures is 0.88 for daily means. The main source of melt energy at the glacier surface is net shortwave radiation (84%) and sensible heat flux (16%). The energy expenditures are from net longwave radiation (55%), heat flux for snow/ice melting (32%), latent heat flux of sublimation and evaporation (7%), and subsurface heat flux (6%). The sensitivity testing of mass balance shows that mass balance is more sensitive to temperature increase and precipitation decrease than temperature decrease and precipitation increase.

期刊论文 2022-05-01 DOI: http://dx.doi.org/10.3390/w12102865

Hanging glaciers hold the absolute dominant number in West China and their changes had important influences on local hydrology, sea-level rise and natural hazards (snow/ice avalanches). However, logistic and operational difficulties have resulted in the lack of in-situ-measured data, leaving us with poor knowledge of the changing behaviors of this type of glacier. Here, we presented the spatiotemporal pattern of seasonal and annual mass changes of a mid-latitude hanging glacier in the Tien Shan based on repeated terrestrial laser scanning (TLS) surveys during the period 2016-2018. The distributed glacier surface elevation changes exhibited highly spatiotemporal variability, and the winter elevation changes showed slight surface lowering at the upper elevations and weak thickening at the glacier terminus, which was contrary to altitudinal elevation changing patterns at the summer and annual scales. Mass balance processes of the hanging glacier mainly occurred during summer and the winter mass balance was nearly balanced (-0.10 +/- 0.15 m w.e.). The glacier exhibited more rapid mass loss than adjacent other morphological glacier and the estimated response time of the glacier to climate change was very short (6-9 years), indicating hanging glaciers will experience rapid wastage and disappearance in the future even with climate change mitigation.

期刊论文 2022-04-01 DOI: http://dx.doi.org/10.1016/j.accre.2021.11.001 ISSN: 1674-9278

The eastern Tien Shan hosts substantial mid-latitude glaciers, but in situ glacier mass balance records are extremely sparse. Haxilegen Glacier No. 51 (eastern Tien Shan, China) is one of the very few well-measured glaciers, and comprehensive glaciological measurements were implemented from 1999 to 2011 and re-established in 2017. Mass balance of Haxilegen Glacier No. 51 (1999-2015) has recently been reported, but the mass balance record has not extended to the period before 1999. Here, we used a 1:50,000-scale topographic map and long-range terrestrial laser scanning (TLS) data to calculate the area, volume, and mass changes for Haxilegen Glacier No. 51 from 1964 to 2018. Haxilegen Glacier No. 51 lost 0.34 km(2) (at a rate of 0.006 km(2) a(-1) or 0.42% a(-1)) of its area during the period 1964-2018. The glacier experienced clearly negative surface elevation changes and geodetic mass balance. Thinning occurred almost across the entire glacier surface, with a mean value of -0.43 +/- 0.12 m a(-1). The calculated average geodetic mass balance was -0.36 +/- 0.12 m w.e. a(-1). Without considering the error bounds of mass balance estimates, glacier mass loss over the past 50 years was in line with the observed and modeled mass balance (-0.37 +/- 0.22 m w.e. a(-1)) that was published for short time intervals since 1999 but was slightly less negative than glacier mass loss in the entire eastern Tien Shan. Our results indicate that Riegl VZ (R)-6000 TLS can be widely used for mass balance measurements of unmonitored individual glaciers.

期刊论文 2022-01-01 DOI: http://dx.doi.org/10.3390/rs14020272

Glaciers, as massive freshwater reservoirs, support the planet's living systems and have an impact on our daily lives, even for communities living far away. Ongoing and future climate change is predicted to have strong impacts on the mass balance of alpine glacier around the world. To understand the relationship between climate and glacier dynamics, a range of mass balance models are currently used. Most of these models however, ignore subsurface heat fluxes as a component of glacier mass balance. Here, we set out to investigate the importance of subsurface heat flux for the mass balance of an alpine glacier using a surface energy mass balance model (SEM) coupled with a multilayer subsurface heat conduction model (MSHCM) that resolves the subsurface glacier temperature. As a case study, we investigate the Urumqi Glacier No.1 in the Tianshan Mountains (NW China), which has a long and continuous time series of surface and subsurface glacier temperature measurements. We evaluate the results of both glacier temperature models (SEM and MSHCM) using these in situ observations and investigate the sensitivity of mass balance to five meteorological factors: air temperature, precipitation, incoming shortwave radiation, relative humidity, and wind speed. The mass balance of the glacier was simulated first by including the influence of subsurface heat flux, and second, the subsurface heat flux was neglected. Observed and simulated mass balance and the englacial temperature were found to be reasonably close in both cases. Furthermore, the mass balance was simulated with a zero surface temperature assumption, which resulted in a 6% overestimation of the summer ablation. We concluded that the mass balance of Urumqi Glacier No.1 was most sensitive to variations in temperature, followed by precipitation. Furthermore, our results show that subsurface heat flux in the ablation area can generally be neglected in estimating the mass balance of alpine glaciers during ablation season.

期刊论文 2021-12-01 DOI: http://dx.doi.org/10.1016/j.gloplacha.2021.103651 ISSN: 0921-8181
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共22条,3页