共检索到 125

The paper presents new radar maps of the south polar region of the Moon at 4.2 cm wavelength with an average spatial resolution of 90 m. The maps are based on radar images obtained in 2023 using the 64-m TNA-1500 antenna of the Bear Lakes Satellite Communications Center of the Special Design Bureau of the Moscow Power Engineering Institute and the 13.2-m RT-13 radio telescopes at the Svetloe and Zelenchukskaya observatories of the Institute of Applied Astronomy of the Russian Academy of Sciences. Radar images are formed in a specific coordinate system relating the Doppler frequency shift with the propagation time delay of the echo components, which makes it difficult to tie them to selenographic coordinates. In this paper, an original method for converting echo Doppler frequency and time delay to selenographic latitude and longitude is proposed, using bilinear interpolation by ephemeris nodal values, taking into account long integration times. The accuracy of the reference of the maps constructed in this way was assessed and compared with the LROC WAC global optical map of the Moon and mosaics of permanently shadowed regions from LROC NAC. It is shown that radar maps at 4.2 cm wavelength contain features of the lunar surface that are hidden in optical images and are located in the regolith at depths of up to 1 m or in permanently shadowed regions of the south polar region of the Moon. The maps of the lunar echoes specular and diffuse polarization components, as well as a map of the distribution of circular polarization ratios, are available on the Internet at http://luna.iaaras.ru/ and can be useful for studying the geological history of the Moon, searching for ice deposits, and selecting safe landing sites when planning future lunar missions.

期刊论文 2025-10-01 DOI: 10.1134/S003809462460210X ISSN: 0038-0946

Surface soil moisture (SSM) is a key limiting factor for vegetation growth in alpine meadow on the Qinghai-Tibetan Plateau (QTP). Patches with various sizes and types may cause the redistribution of SSM by changing soil hydrological processes, and then trigger or accelerate alpine grassland degradation. Therefore, it is vital to understand the effects of patchiness on SSM at multi-scales to provide a reference for alpine grassland restoration. However, there is a lack of direct observational evidence concerning the role of the size and type of patches on SSM, and little is known about the effects of patches pattern on SSM at plot scale. Here, we first measured SSM of typical patches with different sizes and types at patch scale and investigated their patterns and SSM spatial distribution through unmanned aerial vehicle (UAV)-mounted multi-type cameras at plot scale. We then analyzed the role of the size and type of patchiness on SSM at both patch and plot scales. Results showed that: (1) in situ measured SSM of typical patches was significantly different (P < 0.01), original vegetation patch (OV) had the highest SSM, followed by isolate vegetation patch (IV), small bare patch (SP), medium bare patch (MP) and large bare patch (LP); (2) the proposed method based on UAV images was able to estimate SSM (0-40 cm) with a satisfactory accuracy (R-2 = 0.89, P < 0.001); (3) all landscape indices of OV, with the exception of patch density, were positively correlated with SSM at plot scale, while most of the landscape indices of LP and IV showed negative correlations (P < 0.05). Our results indicated that patchiness intensified the spatial heterogeneity of SSM and potentially accelerated the alpine meadow degradation. Preventing the development of OV into IV and the expansion of LP is a critical task for alpine meadow management and restoration.

期刊论文 2025-09-01 DOI: http://dx.doi.org/10.3390/rs12244121

We present a high-resolution geologic map of the Rubin crater region, located on Mons Amundsen, which has been identified as a promising site for future lunar exploration (AOI E in Wueller et al., 2024). We developed a design reference mission (DRM) to highlight the region's potential for addressing key lunar science goals, particularly those related to the early lunar bombardment history, lunar crustal rocks, volatiles, impact processes at multiple scales, and regolith properties, as outlined by the National Research Council (2007). The Rubin crater, which formed about 1.58 billion years ago during the Eratosthenian period, excavated material from depths of up to 320 m, potentially reaching the underlying South Pole-Aitken (SPA) massif, Mons Amundsen. This makes the crater's ejecta material, along with the Amundsen ejecta covering the massif, prime targets for sampling SPA-derived materials that can expand our understanding of early Solar System dynamics and the lunar cratering chronology. Additionally, the region hosts several permanently shadowed regions (PSRs), ideal for studying potential lunar volatiles and the processes affecting their distribution. The DRM proposes nine traverse options for exploration via walking EVAs, the Lunar Roving Vehicle (LRV), and LRV-assisted EVAs, with traverse lengths ranging from 3.6 km to 18.2 km. Each traverse is designed to sample diverse geologic units and address multiple scientific objectives. Given its scientific potential and favorable exploration conditions, the Rubin crater region is an ideal location for testing south polar landing operations, potentially paving the way for more complex missions, such as a Shackleton crater landing. (c) 2025 The Author(s). Published by Elsevier B.V. on behalf of COSPAR. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

期刊论文 2025-07-15 DOI: 10.1016/j.asr.2025.05.061 ISSN: 0273-1177

Local site conditions recognized as a determining factor in assessing the extent of seismic hazard and damage distribution during earthquakes. Present study emphasizes seismic hazard of international business corridor of Agartala town capital of Tripura, one of the northeastern state of India categorized as highest seismic zone (zone V) attributing seismic response of local subsoil deposits under site-specific scenario earthquake motions including liquefaction susceptibility prediction. One-dimensional nonlinear ground response analysis with input of geotechnical parameters was carried using DEEPSOIL (2018) program across central zone of Agartala city and liquefaction susceptibility analysis are performed based on standard penetration test (SPT) utilizing well-established empirical relationship. The novelty of results lies in use of site-specific dynamic parameters of subsoil and synthetic ground motions based on scenario earthquake. Besides, numerical model was validated with a recent past liquefaction case study in Tripura which also attributes key highlight of this study. Key seismic hazard parameters in the form of peak ground acceleration (PGA), amplification factor (Af), and predominant frequencies (fn) are presented through geographical information based spatial maps. These maps provide crucial inputs for planners and designers for future urban planning along with seismic strengthening of existing infrastructures. This comprehensive approach offers new perspectives on seismic hazard assessment and future management plan in this region.

期刊论文 2025-06-01 DOI: 10.1007/s11600-024-01502-4 ISSN: 1895-6572

Soil salinization, an overwhelming problem exacerbated by climate change and anthropogenic activities, poses a significant threat to global food security by impairing plant growth, development, and crop productivity. Salinity stress induces osmotic, ionic, and oxidative stresses, disrupting physiological and biochemical processes in plants. Anthocyanins, a class of flavonoids, have emerged as key players in mitigating salt stress through their antioxidant properties, ROS scavenging, and regulation of stress-responsive pathways. During salt stress, ROS act as damaging agents and signaling molecules, upregulating anthocyanin-related genes to mitigate oxidative stress and maintain cellular homeostasis. Anthocyanins mitigate salt stress by regulating osmotic balance, ion homeostasis, and antioxidant defenses. Their biosynthesis is regulated by a network of structural and regulatory genes, including MYB, bHLH, and WD40 transcription factors, influenced by epigenetic modifications and hormonal signaling pathways such as ABA, JA, and SA. Advances in genetic engineering, including CRISPR/Cas9-mediated gene editing, have enabled the development of anthocyanin-rich transgenic plants with enhanced salt tolerance. For instance, transgenic plants overexpressing anthocyanin biosynthesis genes like DFR and ANS have demonstrated enhanced salt tolerance in crops such as tomatoes and rice. However, challenges such as variability in anthocyanin accumulation and stability under environmental stressors remain. This review highlights the translational potential of anthocyanins in crop improvement, emphasizing the need for integrated multi-omics approaches and field trials to validate their efficacy. By elucidating the molecular mechanisms of salt stress and anthocyanin-mediated stress alleviation, this work provides a foundation for developing resilient crops to address the growing challenges of soil salinization.

期刊论文 2025-06-01 DOI: 10.1007/s10725-025-01298-3 ISSN: 0167-6903

An increasing amount of evidence indicates that lunar water ice exists in permanently shadowed regions at the poles and will soon become an important resource for lunar exploration. However, the water ice content and distribution are still uncertain. We report a new 70-cm-wavelength radar image of the lunar south pole obtained by an Earth-based bistatic radar system consisting of the Sanya incoherent scatter radar (SYISR) and the five-hundred-meter aperture spherical radio telescope (FAST). The upper limit of water ice content (0 wt.%-6 wt.%) and its potential distribution are determined from a radar circular polarization ratio (CPR) map by considering the coherent backscatter opposition effect (CBOE) of water ice and ignoring the contribution of roughness to the CPR. This result is advantageous for future lunar exploration missions. (c) 2025 The Authors. Published by Elsevier B.V. and Science China Press. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

期刊论文 2025-05-30 DOI: 10.1016/j.scib.2025.02.033 ISSN: 2095-9273

This paper investigates the spatiotemporal dynamics and their changes of the southern limit of latitudinal permafrost (SLLP) and the lower limit of mountain permafrost (LLMP) in Northeast China, emphasizing the roles of climate change and human activities. Permafrost in this region is primarily distributed in the northern parts of the Da and Xiao Xing'anling mountain ranges and in the upper parts of the Changbai Mountains and at the summits of the Huanggangliang Mountains in the southern part of the Da Xing'anling Mountain Range. Permafrost degradation, ongoing since at least the local Holocene Megathermal Period (8.5-6.0 ka BP), has intermittently reversed during cooler climatic intervals but continues to exert significant impacts on regional environments, infrastructure stability, and carbon storage. Notably, the northward retreats of the SLLP since the mid-19th century underscore the sustained nature of this degradation, especially in southern patchy permafrost zones increasingly sensitive to warming and anthropogenic influences. LLMP variability is similarly shaped by a combination of climatic, hydrometeorological, ecological, and topographic factors. The distributions of SLLP and LLMP are further complicated by the presence of relict and sporadic permafrost, as well as the hydrothermal effects of vegetation and snow cover. Addressing the challenges of mapping and modeling boreal permafrost in Northeast China requires comprehensive field investigations, long-term in situ monitoring via station networks, and advanced numerical modeling. Emerging technologies, including satellite and airborne remote sensing (RS), geographic information systems (GIS), unmanned aerial vehicles (UAVs), surface geophysical methods, and big data analytics, offer new possibilities for enhancing permafrost monitoring and mapping. Integrating these tools with conventional field studies can significantly improve our understanding of permafrost dynamics. Continued efforts in monitoring, technological innovation, multidisciplinary collaboration, and international cooperation are essential to meet the challenges posed by permafrost degradation in a changing climate.

期刊论文 2025-05-14 DOI: 10.1002/ppp.2285 ISSN: 1045-6740

Highlights What are the main findings? The bast fibers extracted from the second generation of energy crop L. biomass have consistent yield and stable productivity across different seasons; Sida hermaphroditaThe results revealed a favorable moisture content, strength, and toughness, suitable for storage and processing. What are the implications of the main findings? fibers are suitable for use in a wide range of industrial applications, where a combination of lightness, strength, and toughness is required; Sida hermaphroditaAccording to the circular economy principles, a high percentage of side streams after fiber isolation are successfully applied for biofuel production.Highlights What are the main findings? The bast fibers extracted from the second generation of energy crop L. biomass have consistent yield and stable productivity across different seasons; Sida hermaphroditaThe results revealed a favorable moisture content, strength, and toughness, suitable for storage and processing. What are the implications of the main findings? fibers are suitable for use in a wide range of industrial applications, where a combination of lightness, strength, and toughness is required; Sida hermaphroditaAccording to the circular economy principles, a high percentage of side streams after fiber isolation are successfully applied for biofuel production.Abstract Virginia mallow or Sida hermaphrodita (L.) Rusby (SH) is a perennial plant from the Malvaceae family (mallows) that is used for medicinal purposes, reducing soil erosion, cleaning soil, and most recently for energy production. The potential of sustainable lignocellulosic agro-waste is immense as it represents Earth's most abundant organic compound. This paper explores fibers isolated from SH stems, a plant with significant industrial application potential, including technical textiles and biocomposites. The fibers were harvested in January, March, and November of 2020 and in January and March of 2021, and their yield, mechanical properties, moisture content, and density were thoroughly analyzed. The fiber yield showed slight variations depending on the harvest time, with consistent results observed across different years, suggesting stable productivity. The SH fibers demonstrated a favorable moisture content, making them suitable for storage and processing, and their density ranged between 1.52 and 1.58 g/cm3, comparable to that of other natural fibers. According to this research, the best mechanical properties were observed in the winter harvest. Furthermore, the high percentage of solid residue left after fiber extraction shows promise for sustainable utilization, primarily for biofuel production. This study underscores the versatility and sustainability of SH fibers, positioning them as a valuable resource for a wide range of industrial applications.

期刊论文 2025-05-13 DOI: 10.3390/fib13050063

Several slug species are serious pests of agriculture and are difficult to control. One popular control method is the nematode Phasmarhabditis hermaphrodita, which has been used in slug control for > 25 years. However, there are reports of it failing to reduce slug numbers and damage in the field for unknown reasons. This may be due to lack of knowledge about how P. hermaphrodita performs when applied to different soils. We therefore assessed the survival, movement and pathogenicity of P. hermaphrodita infective juveniles (IJs) when added to six different soils (compost with and without peat, clay loam, loam, sandy loam and sandy soil). The soils were either frozen or autoclaved before use to eradicate resident nematodes prior to the experiment. P. hermaphrodita survived best in autoclaved compost without peat and in experiments with frozen soils, compost with and without peat was best. Survival of P. hermaphrodita was similar in other soils. Interestingly, in peat-free compost P. hermaphrodita reproduced prolifically, which may affect the long-term success of the nematode in the field as other life stages, apart from the IJ stage, cannot infect slugs. In infection experiments we found P. hermaphrodita added to compost with peat killed slugs faster than nematodes added to a sandy clay loam or sandy soil. In movement experiments, the nematodes remained within 3 cm of the application point in each soil. In summary, soil type severely affects P. hermaphrodita survival, and the ability to kill slugs; therefore it should be assessed by farmers and gardeners before use.

期刊论文 2025-05-01 DOI: 10.1016/j.biocontrol.2025.105751 ISSN: 1049-9644

The permanently shadowed regions of the lunar South Pole have become a key target for international lunar exploration due to their unique scientific value and engineering challenges. In order to effectively screen suitable landing zones near the lunar South Pole, this research proposes a comprehensive evaluation method based on a self-organizing map (SOM). Using multi-source remote sensing data, the method classifies and analyzes candidate landing zones by combining scientific purposes (such as hydrogen abundance, iron oxide abundance, gravity anomalies, water ice distance analysis, and geological features) and engineering constraints (such as Sun visibility, Earth visibility, slope, and roughness). Through automatic clustering, the SOM model finds the important regions. Subsequently, it integrates with a supervised learning model, a random forest, to determine the feature importance weights in more detail. The results from the research indicate the following: the areas suitable for landing account for 9.05%, 5.95%, and 5.08% in the engineering, scientific, and synthesized perspectives, respectively. In the weighting analysis of the comprehensive data, the weights of Earth visibility, hydrogen abundance, kilometer-scale roughness, and slope data all account for more than 10%, and these are thought to be the four most important factors in the automated site selection process. Furthermore, the kilometer-scale roughness data are more important in the comprehensive weighting, which is in line with the finding that the kilometer-scale roughness data represent both surface roughness from an engineering perspective and bedrock geology from a scientific one. In this study, a local examination of typical impact craters is performed, and it is confirmed that all 10 possible landing sites suggested by earlier authors are within the appropriate landing range. The findings demonstrate that the SOM-model-based analysis approach can successfully assess lunar South Pole landing areas while taking multiple constraints into account, uncovering spatial distribution features of the region, and offering a rationale for choosing desired landing locations.

期刊论文 2025-04-29 DOI: 10.3390/rs17091579
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共125条,13页