在列表中检索

共检索到 2

Northeastern China (NEC) is the largest grain base in China. Improving understanding of the effect of climate change on grain production over NEC is conducive to providing immediate response strategies for grain production. In this study, the relationships of the maize production with the dry state during the different maize growth stage have been investigated using the year-to-year increment method. Results showed that the severe drought that occurred from the jointing to maturity period have exerted severe effects on the maize growth. Further analysis indicated that the sea surface temperature (SST) anomalies over North Atlantic and Maritime Continent in later spring are the important factors affecting the summer droughts over NEC. The late spring SST anomaly over North Atlantic can excite the Rossby waves from the western North Atlantic and propagate eastward to NEC. The snow anomaly over western Siberia in late spring and the soil moisture anomaly over NEC in summer are key factors linking the SST anomaly to drought over the NEC. On the other hand, the Maritime Continent SST anomaly in late spring can modulate the activity of the East Asian jet stream via the East AsiaPacific (EAP) teleconnection, which can provide the favorable conditions for the soil moisture reduction over NEC. Eventually, a predictive model for maize yield over NEC is successfully developed by using the predictive indices of the North Atlantic and the Maritime Continental SST during late spring. Both the cross-validation and independent sample tests show that the calibrated prediction model is robust and exhibits high skill in predicting maize yield over NEC.

期刊论文 2025-03-01 DOI: 10.1016/j.atmosres.2024.107806 ISSN: 0169-8095

Climate change still adversely affects agriculture in the sub-Saharan Africa. There is need to strengthen early action to bolster livelihoods and food security. Most governments use pre- and post-harvest field surveys to capture statistics for National Food Balance Sheets (NFBS) key in food policy and economic planning. These surveys, though accurate, are costly, time consuming, and may not offer rapid yield estimates to support governments, emergency organizations, and related stakeholders to take advanced strategic decisions in the face of climate change. To help governments in Kenya (KEN), Zambia (ZMB), and Malawi (MWI) adopt digitally advanced maize yield forecasts, we developed a hybrid model based on the Regional Hydrologic Extremes Assessment System (RHEAS) and machine learning. The framework is set-up to use weather data (precipitation, temperature, and wind), simulations from RHEAS model (soil total moisture, soil temperature, solar radiation, surface temperature, net transpiration from vegetation, net evapotranspiration, and root zone soil moisture), simulations from DSSAT (leaf area index and water stress), and MODIS vegetation indices. Random Forest (RF) machine learning model emerged as the best hybrid setup for unit maize yield forecasts per administrative boundary scoring the lowest unbiased Root Mean Square Error (RMSE) of 0.16 MT/ha, 0.18 MT/ha, and 0.20 MT/ha in Malawi's Karonga district, Kenya's Homa Bay county, and Zambia's Senanga district respectively. According to relative RMSE, RF outperformed other hybrid models attaining the lowest score in all countries (ZMB: 25.96%, MWI: 28.97%, and KEN: 27.54%) followed by support vector machines (ZMB: 26.92%, MWI: 31.14%, and KEN: 29.50%), and linear regression (ZMB: 29.44%, MWI: 31.76%, and KEN: 47.00%). Lastly, the integration of VI and RHEAS information using hybrid models improved yield prediction. This information is useful for NFBS bulletins forecasts, design and certification of maize insurance contracts, and estimation of loss and damage in the advent of climate justice.

期刊论文 2024-07-15 DOI: 10.1016/j.heliyon.2024.e33449
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页