共检索到 2

The complex mechanical and damage mechanisms of rocks are intricately tied to their diverse mineral compositions and the formation of pores and cracks under external loads. Numerous rock tests reveal a complex interplay between the closure of porous defects and the propagation of induced cracks, presenting challenges in accurately representing their mechanical properties, especially under true triaxial stress conditions. This paper proposes a conceptualization of rock at the mesoscopic level as a two-phase composite, consisting of a bonded medium matrix and frictional medium inclusions. The bonded medium is characterized as a mesoscopic elastic material, encompassing various minerals surrounding porous defects. Its mechanical properties are determined using the mixed multi-inclusion method. Transformation of the bonded medium into the frictional medium occurs through crack extension, with its elastoplastic properties defined by the Drucker-Prager yield criterion, accounting for hardening, softening, and extension. Mori-Tanaka and Eshelby's equivalent inclusion methods are applied to the bonded and frictional media, respectively. The macroscopic mechanical properties of the rock are derived from these mesoscopic media. Consequently, a True Triaxial Macro-Mesoscopic (TTMM) constitutive model is developed. This model effectively captures the competitive effect and accurately describes the stress-deformation characteristics of granite. Utilizing the TTMM model, the strains resulting from porous defect closure and induced crack extension are differentiated, enabling quantitative determination of the associated damage evolution. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V.

期刊论文 2024-08-01 DOI: 10.1016/j.jrmge.2023.11.0351674-7755 ISSN: 1674-7755

This paper presents the establishment of a macro-mesoscopic constitutive model based on poromechanics for investigating the mechanics of warm frozen soil. The elastic parameters of warm frozen soil are influenced by the ice content variations during the loading process, considering the pressure melting characteristic of warm frozen soil. Through the integration of poromechanics and mesomechanics, a macro-mesoscopic constitutive model incorporating the pressure melting effect is developed to characterize the mechanical properties of warm frozen soil. The proposed model establishes a relationship between the elastic modulus at the mesoscopic and macroscopic scales of warm frozen soil.To validate the model, a comparison is made between the model predictions and experimental data obtained from warm frozen silt. The results demonstrate that the model effectively captures significant mechanical performance of warm frozen soil, including strain soft and dilatancy phenomena under various confining pressure conditions. Furthermore, the proposed model enables the prediction of freezing temperature, unfrozen water saturation, unfrozen water pressure, ice pressure, and porosity changes in warm frozen silt samples during the loading process.

期刊论文 2024-05-01 DOI: 10.1016/j.coldregions.2024.104156 ISSN: 0165-232X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页