共检索到 29

Distinguishing the origin of lunar water ice requires in situ isotopic measurements with high sensitivity and robustness under extreme lunar conditions; however, challenges such as uncertain water contents and isotopic fractionation induced by regolith particles restrict isotopic analysis. Herein, we present a miniaturized tunable diode laser absorption spectrometer (TDLAS) developed as the core prototype for the Chang'E-7 Lunar Soil Water Molecule Analyzer (LSWMA). The wavelength range of the instrument is 3659.5-3662.0 cm-1, and the system integrates a Herriott cell for stable multi-isotope (H2 16O, H2 18O, H2 17O, and HD16O) detection and employs regolith samples of known isotopic experiments to quantify adsorption-induced fractionation. Performance evaluations demonstrated a dynamic water detection range of 0.01-2 wt % and isotope precision up to 1.3 parts per thousand for delta D (30.5 s), 0.77 parts per thousand for delta 18O (36 s), and 0.75 parts per thousand for delta 17O (21.5 s) with extended averaging. Repeated injections of three types of standard water revealed a volume-dependent deviation (Delta delta D up to -59.5 parts per thousand) attributed to multilayer adsorption effects, while simulated lunar soil experiments identified additional isotopic fractionation (Delta delta D up to -12.8 parts per thousand) caused by particle binding. These results validate the ability of the spectrometer to resolve subtle isotopic shifts under lunar conditions, providing critical data for distinguishing water origins and advancing future resource utilization strategies.

期刊论文 2025-06-10 DOI: 10.1021/acssensors.5c01115 ISSN: 2379-3694

An increasing amount of evidence indicates that lunar water ice exists in permanently shadowed regions at the poles and will soon become an important resource for lunar exploration. However, the water ice content and distribution are still uncertain. We report a new 70-cm-wavelength radar image of the lunar south pole obtained by an Earth-based bistatic radar system consisting of the Sanya incoherent scatter radar (SYISR) and the five-hundred-meter aperture spherical radio telescope (FAST). The upper limit of water ice content (0 wt.%-6 wt.%) and its potential distribution are determined from a radar circular polarization ratio (CPR) map by considering the coherent backscatter opposition effect (CBOE) of water ice and ignoring the contribution of roughness to the CPR. This result is advantageous for future lunar exploration missions. (c) 2025 The Authors. Published by Elsevier B.V. and Science China Press. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

期刊论文 2025-05-30 DOI: 10.1016/j.scib.2025.02.033 ISSN: 2095-9273

Detection of water-ice deposits using synthetic aperture radar (SAR) is a cost-effective, and efficient approach to understand lunar water resources. As water is crucial to supporting human-based space exploration, current and near upcoming lunar missions are primary concentrated on mapping and quantification of water ice exposures on surface and subsurface levels. The circular polarization ratio greater than one (CPR >1) derived using the orbital radar observations is considered as an important SAR derived parameter for water-ice detection. This study aims to investigate 14 craters near the lunar poles with high CPR (CPR >1), as identified in previous studies, using the L-band (24 cm) dual frequency synthetic aperture radar (DFSAR) onboard Chandrayaan-2. In addition to CPR, we computed the degree of polarization (DOP) after applying parallax error correction that helps in reducing misinterpretation. Our findings are based on orthorectified DFSAR calibrated data analysis. We found that the CPR of crater interiors is not significantly different from that of their surroundings, and this pattern is consistent throughout all the 14 craters selected. Further, we also found a linear inverse relationship between CPR and DOP for the interior and exteriors of the craters, with R-2 0.99, indicating a strong correlation between these two parameters. We found only 2 % of total pixels are above CPR > 1, which indicates that there is less possibility of homogeneous water-ice but the possibility of water-ice mixed with the subsurface regolith cannot be ruled out.

期刊论文 2025-05-15 DOI: 10.1016/j.icarus.2025.116492 ISSN: 0019-1035

This paper presents an ultrasonic sampling penetrator with a staggered-impact mode, which has been developed for the extraction of lunar water ice. A comparison of this penetrator with existing drilling and sampling equipment reveals its effectiveness in minimizing disturbance to the in situ state of lunar water ice. This is due to the interleaved impact penetration sampling method, which preserves the original stratigraphic information of lunar water ice. The ultrasonic sampling penetrator utilizes a single piezoelectric stack to generate the staggered-impact motion required for the sampler. Finite element simulation methods are employed for the structural design, with modal analysis and modal degeneracy carried out. The combined utilization of harmonic response analysis and transient analysis is instrumental in attaining the staggered-impact motion. The design parameters were then used to fabricate a prototype and construct a test platform, and the design's correctness was verified by the experimental results. In future sampling of lunar water ice at the International Lunar Research Station, the utilization of the ultrasonic sampling penetrator is recommended.

期刊论文 2025-04-19 DOI: 10.3390/aerospace12040358

This study investigates the detectability of a putative layer of regolith containing water ice in the lunar polar regions using ground penetrating radar (GPR). Numerical simulations include realistic variations in the relative permittivity of the lunar regolith, considering both density and, for the first time, the effects of temperature on permittivity profiles. We follow the case of previous theoretical studies of water migration, which suggest that water ice accumulates at depths ranging from a few centimeters to tens of centimeters, appropriate depths to explore using GPR. In particular, frequency-modulated continuous wave (FMCW) radar is well-suited for this purpose due to its high range resolution and robust signal-to-noise ratio. This study evaluates two scenarios for the presence of lunar water ice: (1) a layer of regolith containing water ice at a depth of 5 cm, with a thickness of 5 cm, and (2) a layer of regolith containing water ice at a depth of 20 cm, with a thickness of 10 cm. Our computational results show that FMCW GPR, equipped with a dynamic range of 90 dB, is capable of detecting reflections from the interfaces of these layers, even under conditions of low water ice content and using antennas with low directivity. In addition, optimized antenna offsets improve the resolution of the upper and lower interfaces, particularly when applied to the surface of ancient crater ejecta. This study highlights the critical importance of understanding subsurface density and temperature structures for the accurate detection of water-ice-bearing regolith layers.

期刊论文 2025-03-17 DOI: 10.3390/rs17061050

Water resources on the Moon are a critical component of international strategies for exploration of the solar system and space-based economic development. Liquid water is essential for human life support and propellant generation. Extreme Lunar conditions of near-vacuum and low temperature preclude the natural presence of liquid water; and they provide the thermodynamic context for water occurrence and its potential extraction. Ice crystals were observed by LCROSS and are inferred to reside in pore spaces of lunar regolith or at the surface in places. Any system proposed for lunar ice mining by induced sublimation needs to address potential vapor loss to the ambient near-vacuum; regolith cohesiveness; low regolith thermal conductivity; negligible sublimation rates below-200K; low rates of vapor advection-diffusion through porous regolith; and pressurization due to sublimation that causes redeposition. All of these obstacles have potential solutions with available technologies, but they must be designed within power availability constraints and with the potential to scale up to the resource needs of a growing space economy.

期刊论文 2025-03-01 DOI: 10.1016/j.actaastro.2024.12.011 ISSN: 0094-5765

Observations of widespread hydration across the lunar surface could be attributed to water formed via the implantation of solar wind hydrogen ions into minerals at the surface. Solar wind irradiation produces a defectrich outer rim in lunar regolith grains which can trap implanted hydrogen to form and store water. However, the ability of hydrogen and water to be retained in space weathered regolith at the lunar surface is not wellunderstood. Here, we present results of novel and coordinated high-resolution analyses using transmission electron microscopy and atom probe tomography to measure hydrogen and water within space weathered lunar grains. We find that hydrogen and water are present in the solar wind-damaged rims of lunar grains and that these species are stored in higher concentrations in the vesicles that are formed by solar wind irradiation. These vesicles may serve as reservoirs that store water over diurnal and possibly geologic timescales. Solar windderived water trapped in space weathered rims is likely a major contributor to observations of the widespread presence, variability, and behavior of the water across the lunar surface.

期刊论文 2025-02-01 DOI: 10.1016/j.epsl.2024.119178 ISSN: 0012-821X

This work reports the spatial and diurnal variations of the number densities of lunar molecular water (H2O), atomic mass unit (amu) 18 and hydroxyl (OH), amu 17 over low (0 degrees to 30 degrees), middle (31 degrees to 60 degrees) and high (61 degrees to 80 degrees) latitudinal regions of the lunar exosphere during the pre-sunrise, noon, sunset and midnight periods using the mass spectrometric data of CHandra's Atmospheric Composition Explorer-2 (CHACE-2) on board Chandrayaan-2, the second lunar mission developed in India. Both H2O and OH exhibit, particularly in the low latitude regions, a trend of increasing number density after the sunrise and up to noon, followed by a decrease till sunset. An overall higher density of H2O is obtained compared to the previous reports. The findings are justified in terms of the polar orbital height of the instrument and the duration of data procurement. The maximum number density for the low, middle and high latitudes reaches 5225 cm- 3, 5135 cm- 3 and 3747 cm- 3, respectively. The corresponding OH abundances are found to be 5079 cm-3, 5565 cm-3 and 5720 cm- 3. The diurnal variations of H2O and OH and their comparisons, similar to those of the present report may provide suitable means for tracing the lunar water cycle. The CHACE-2 observations imply that the influence of magnetotail passage on volatiles like water is to be further quantified in future missions with other sensors.

期刊论文 2025-01-15 DOI: 10.1016/j.icarus.2024.116365 ISSN: 0019-1035

Earth-based radar (EBR) is an important type of remote sensing instrument for planetary observation. EBR takes advantages in large-scale imaging swath, high repeatability, great flexibility, and so on. The upcoming 233-MHz-frequency European Incoherent Scatter Scientific Association (EISCAT) 3-D radar system will provide important features to lunar observation as introduced in this study. EISCAT_3D (E3D) radar is a powerful multistatic radar system. The 1.3-m wavelength wave of E3D can penetrate deeper, about 30 m below the lunar average surface, which can reach the second layer, i.e., layer of ejecta. E3D radar supports dual/quadrature polarimetry, which gives it good flexibility and lower ambiguity in the inference of scatter's properties. Also, there is less ambiguity in scattering regimes between icy and nonicy scatters for 1.3-m wavelength than for shorter wavelengths as given from the simulation results. Besides, the high topographic resolution (which requires forming interferometric baselines with distant telescope antennas) of E3D radar along with its penetration depth makes it possible for detection of sublunarean cavities by signatures of depression. As a whole, the 1.3-m wavelength 3-D polarimetric imaging of the Moon by E3D radar, on a spatial resolution of about 200 m, will be valuable for obtaining new information about the geology and subsurface structure of the Moon and can be used in search of buried water ice, sublunarean cavity, and so on. Furthermore, we envision the collaboration of E3D radar with large telescope antennas in China, including Daocheng Solar Radio Telescope (DSRT) and Mingantu spectral radioheliograph (MUSER) for better imaging ability and detectivity.

期刊论文 2025-01-01 DOI: 10.1109/TGRS.2025.3563152 ISSN: 0196-2892

The lunar poles potentially contain vast quantities of water ice. The water ice is of interest due to its capability to answer scientific questions regarding the Solar System's water reservoir and its potential as a useable space resource for the creation of a sustainable cislunar economy. The lunar polar water ice exists in extremely harsh conditions under vacuum at temperatures as low as 40 K. Therefore, finding the most effective technique for extracting this water ice is an important aspect of ascertaining the suitability of lunar water as an economically viable space resource. Based on previous work, this study investigates the impact of the different possible arrangements of icy regolith in the lunar polar environment on the suitability of microwave heating as a water extraction technique. Three arrangements of icy regolith analogues were created: permafrost, fine granular, and coarse granular. The samples were created to a mass of 40 g, using the lunar highlands simulant LHS-1, and a target water content of 5 wt %. The samples were processed in a microwave heating unit using 250 W, 2.45 GHz microwave energy for 60 min. The quantity of water extracted was determined by measuring the sample mass change in real-time during microwave heating and the sample mass before and after heating. The permafrost, fine granular, and coarse granular samples had extraction ratios of 92 %, 83 %, and 97 %, respectively. Possible explanations for the observed variations seen in the mass loss profiles of the respective samples are provided, including explanations for the differences between samples of varying ice morphology (permafrost and granular) and the differences between samples with varying ice surface areas (fine and coarse granular). While differences were observed, microwave heating effectively extracted water in all the samples and remains an effective ISRU technique for extracting water from icy lunar regolith. Differences in the water extraction of different icy regolith could be useful in determining the arrangement of ice in buried samples.

期刊论文 2025-01-01 DOI: 10.1016/j.pss.2024.106011 ISSN: 0032-0633
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共29条,3页