共检索到 5

Establishing a permanent, self-sufficient habitat for humans on planetary bodies is critical for successful space exploration. In-situ resource utilisation (ISRU) of locally available resources offers the possibility of an energy-efficient and cost-effective approach. This paper considers the high-temperature processing of molten lunar regolith under conditions which represent the lunar environment, namely low gravity, low temperature, and negligible atmospheric pressure. The rheological properties of the low-titanium lunar mare regolith simulant JSC-1A are measured using concentric cylinder rheometry and these results are used to explore the influence of viscosity on processing operations involving the flow of molten regolith for fabricating construction components on the Moon surface. These include the delivery of molten regolith within an extrusion-based 3D printing technique and the ingress of molten regolith into porous structures. The energy and power required to establish and maintain sufficiently high temperatures for the regolith to remain in the liquid state are also considered and discussed in the context of lunar construction.

期刊论文 2025-01-31 DOI: 10.1038/s41598-025-87761-7 ISSN: 2045-2322

Since the landing on the lunar surface, the lunar regolith has begun to interact in different ways with landed elements, such as the wheels of a rover, astronaut suits, drills, and plants for extracting oxygen or manufacturing objects. Therefore, a strong effort has been required on Earth to fully characterise these kinds of interactions and regolith utilisation methods. This operation can only be performed by using regolith simulants, soils that are reproduced with the Earth's rocks and minerals to match the real features. This article presents the main guidelines and tests for obtaining the properties of a generic simulant in terms of composition, physical and mechanical properties, solid-fluid interaction, and thermal properties. These parameters are needed for the designing and testing of payloads under development for planned lunar surface missions. The same tests can be performed on lunar, martian, or asteroid simulants/soils, both in laboratory and in situ. A case study is presented on the lunar simulant NU-LHT-2M, representative of the lunar highlands. The tests are performed in the context of an in situ resource utilisation (ISRU) process that aims to extract oxygen from the lunar regolith using a low-temperature carbothermal reduction process, highlighting the main regolith-related criticalities for an in situ demonstrator plant.

期刊论文 2024-04-01 DOI: 10.3390/aerospace11040295

As icy regolith is believed to exist in the subsurface of permanently shadowed areas near the lunar south pole, there is a growing interest in obtaining samples from these polar regions. To qualify for spaceflight, sampling instruments must demonstrate their ability to operate in the expected environment. However, there is currently no quantitative data detailing the extent and distribution of ice in polar regolith. While work has been done to determine the effects of water ice content in simulants such as JSC-1A, to date there has been no investigation into the properties of icy simulants of the regolith believed to be found at lunar polar regions. A series of experiments has therefore been conducted to determine the properties of icy NU-LHT-2M lunar highland simulant, an approximation of lunar polar regolith, at varying degrees of saturation. A number of procedures for preparing the simulant were tested, with the aim of defining a standardised technique for the creation of icy simulants with controlled water contents. Saturation of the highland simulant was found to occur at a water mass content between 13% and 17%, while cone penetration tests demonstrated that a significant increase in penetration resistance occurs at 5 +/- 1%. Uniaxial compression tests showed an increase in regolith strength with water mass and density, which slows down as the saturation level is reached. The results presented here demonstrate the first characterisation of the properties of icy lunar polar regolith simulants, which can be expanded upon to further the understanding of its properties for use in future instrumentation testing. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved.

期刊论文 2016-03-01 DOI: 10.1016/j.asr.2015.12.030 ISSN: 0273-1177

Melting sulfur and mixing it with an aggregate to form concrete is commercially well established and constitutes a material that is particularly well-suited for use in corrosive environments. Discovery of the mineral troilite (FeS) on the moon poses the question of extracting the sulfur for use as a lunar construction material. This would be an attractive alternative to conventional concrete as it does not require water. However, the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. Here it is assumed that the lunar ore can be mined, refined, and the raw sulfur melded with appropriate lunar regolith to form, for example, bricks. This study evaluates pure sulfur and two sets of small sulfur concrete samples that have been prepared using JSG-1 lunar stimulant and SiO2 powder as aggregate additions. Each set was subjected to extended periods in a vacuum environment to evaluate sublimation issues. Results from these experiments are presented and discussed within the context of the lunar environment. Published by Elsevier Ltd on behalf of COSPAR.

期刊论文 2008-01-01 DOI: 10.1016/j.asr.2007.08.018 ISSN: 0273-1177

Reaching the cold traps at the lunar poles and directly sensing the subsurface regolith is a primary goal of lunar exploration, especially as a means of prospecting for future In Situ Resource Utilization (ISRU) efforts. The Construction and Resource Utilization Explorer project (CRUX) addressed technology development associated with a modular, drilling-based payload to achieve this goal. As part of the development of a lunar drill capable of reaching a depth of two meters, a preliminary drilling study was performed using custom designed drill bits and augers in simulated ice-bound lunar regolith. Lunar regolith is known to be very abrasive, but the mechanical properties and drillability of the purported ice-bound material in the lunar cold traps is unknown. Preliminary drilling experiments were performed in the frozen samples, to determine the effectiveness of the drilling hardware and to point the way towards optimized drilling strategies. Additionally, a preliminary experiment was performed to demonstrate the utility of converting drilling energy per volume (Specific Energy) to the Unconfined Compressive Strength (UCS) of the simulated frozen regolith. The results showed that the drilling hardware was capable of penetrating into the samples and that this was most effectively done at slow rotational speeds (< 60 RPM) and with a low axial force (weight-on-bit). The results also indicate that the specific energy of drilling is correlated to the UCS of the material tested.

期刊论文 2007-01-01 ISSN: 0094-243X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页