共检索到 3

This review article provides an overview of various aspects of lunar exploration, including missions to the Moon, collection and analysis of lunar sample data in laboratories, and the processing and analysis of remote sensing data, particularly using radar techniques. Both remote sensing and in-situ methods are critical for advancing our understanding of the lunar surface and its properties. This review article focuses on the identification and quantification of water-ice deposits located in areas such as Permanently shadowed areas (PSRs) and the lunar poles ( Lunar Poles and PSRs: A Special Environment). These volatile resources have the potential to serve as valuable sources of fuel for future missions, making it crucial for the lunar community to determine their abundance and distribution. After thoroughly examining lunar samples using high-precision laboratory techniques, many preconceptions were dispelled which is highlighted in the Laboratory Investigation of Lunar samples. But as in-situ observations are difficult to acquire, especially terrestrial bodies samples, remote sensing techniques allow the global understanding of the surface. The article specifically highlights the importance of understanding the electrical characteristics of the lunar surface and how radar inversion can provide valuable information in this regard. The Conclusion of this review article serves as a key takeaway for readers, underscoring the critical role that both in-situ and remote sensing techniques play in advancing our understanding of the Moon. (c) 2023 COSPAR. Published by Elsevier B.V. All rights reserved.

期刊论文 2024-02-15 DOI: 10.1016/j.asr.2023.05.006 ISSN: 0273-1177

A renaissance is being observed currently in investigations of the Moon. The Luna-25 and Luna-27 missions are being prepared in Russia. At the same time, in connection with the future lunar missions, theory investigations of dust and dusty plasmas at the Moon are being carried out by scientists of the Space Research Institute of the Russian Academy of Sciences. Here, the corresponding results are reviewed briefly. We present the main theory results of these investigations concerning the lunar dusty plasmas. We show, in particular, the absence of the dead zone near a lunar latitude of 80 where, as was assumed earlier, dust particles cannot rise over the surface of the Moon. This indicates that there are no significant constraints on the Moon landing sites for future lunar missions that will study dust in the surface layer of the Moon. We demonstrate that the electrostatically ejected dust population can exist in the near-surface layer over the Moon while the dust appearing in the lunar exosphere owing to impacts of meteoroids present everywhere. The calculated values of number densities at high altitudes of the particles formed as a result of the impacts of meteoroids with the lunar surface are in accordance (up to an order of magnitude) with the data obtained by the recent NASA mission LADEE. Finally, we formulate new problems concerning the dusty plasma over the lunar surface.

期刊论文 2018-07-01 DOI: 10.1016/j.pss.2018.02.010 ISSN: 0032-0633

The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is designed to characterize the exospheric dust environment using an on-board suite of specialized sensors. The objective of this paper is to present results from scattering experiments using an aqueous suspension of lunar simulants that contains a population of dust grains ranging in size from similar to 0.1 pm to 10 pm. The intensity of scattered light is measured with a commercial version of the ultraviolet-visible spectrometer (UVS) used in the LADEE mission. We show that our data is consistent with the fact that micron-sized particles tend to form agglomerates rather than remaining isolated entities and that certain characteristics of the target particles can be predicted from intensity measurements alone. These results can be used directly to assess general features of the lunar exosphere. Further analysis of particle properties from such remote sensing data will require more refined measurements such as polarization features or other components of the Stokes vector. Published by Elsevier Ltd.

期刊论文 2014-01-01 DOI: 10.1016/j.pss.2013.11.005 ISSN: 0032-0633
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页