The solidification and molding of lunar regolith are essential for constructing lunar habitats. This study introduces an innovative lunar regolith molding technique that synergistically combines solar concentration, flexible optical fiber bundle energy transfer, and powder bed fusion. A functional prototype is developed to validate the proposed scheme. Systematic experiments including fixed beam spot melting, line melting, surface melting, and body melting are conducted using simulated basalt lunar regolith. Through in-situ observation of the melt pool's formation, evolution, and expansion dynamics, we identify a sequential transformation mechanism on the powder bed's surface: initial curling evolves into detachment from the bed, subsequent incorporation into a molten droplet, and ultimate solidification. A comprehensive evaluation of density and mechanical properties across multiple parameter combinations reveals that energy flux density of 3.33 MW/m2 with a scan speed of 30 mm/min, inter-track spacing of 3 mm, and layer thickness of 2 mm enables the production of structurally integral samples with continuous morphology. The resulting specimens demonstrate a maximum compressive strength of 4.25 MPa and a density of 2.31 g/cm3. This solar-powered additive manufacturing approach establishes a viable reference framework for large-scale on-site construction of lunar research stations.
As lunar exploration advances, the development of durable and sustainable lunar surface architecture is increasingly critical, with a particular focus on material selection and manufacturing processes. However, current technologies and designs have yet to deliver an optimal solution. This study presented an innovative designs pattern for laser-sintered lunar soil bricks, namely a sintered glass outer layer and a core composed of lunar soil particles. For structural reinforcement purposes, a combined system of columns and slabs was implemented to improve the overall strength characteristics. This approach leverages the low thermal conductivity of lunar regolith particles in conjunction with the thermal stability, radiation resistance, and mechanical strength characteristics of glass. In this case, our simulations of heat conduction demonstrated a marked improvement in the thermal insulation properties of the new lunar soil bricks. The low thermal conductivity of lunar regolith effectively serves as an insulating layer, while the column, plate and glass outer layer, with their higher thermal conductivity, enable rapid thermal response across the entire structure and enhance spatial heat transfer uniformity. We further investigated the influence of structural variations on heat transfer mechanisms, revealing that the thickness of the glass layer exclusively modulates the heat transfer rate without altering its spatial distribution. Additionally, comparative analysis of all designed samples demonstrated that the novel sample displays superior thermal insulation properties, reduces average energy consumption by three quarters, and maintains adequate mechanical strength, alongside the proposal of a suitable assembly and construction methodology. Consequently, we believe that glassy composites exhibit substantial potential for space construction. These findings offer valuable insights and recommendations for material design in lunar surface construction.
Preparing regolith-based composites for 3D printing is crucial in lunar base construction, leveraging costeffective and mechanically favorable materials for lunar construction by utilizing lunar regolith as the reinforcing phase. This research focuses on developing lunar regolith simulant as a matrix for 3D printing, which is crucial for in-situ resource utilization on the Moon. Resin-based composites, well-established in aerospace, are explored for their simple manufacturing and robust properties. The formulation involves simulated regolithbased polymer for direct ink writing printing. Rheological properties, including yield stress and plastic viscosity, are characterized across various cementite-sand ratios and printing temperatures. The relationship between extrudability, the time interval of the printing material and its rheological attributes is investigated. Quantitative assessment of material buildability employs three-dimensional scanning of the printed parts. Freeze-thaw cycle tests explore its temperature resilience. The influence of varying the printing infill rate on printing efficiency and the performance of the printed parts was assessed. It was found that modulating the printing infill rate affects the efficiency and performance of parts, with a 1:4 cementite-sand ratio and a 40 degrees C print temperature demonstrating optimal printing workability. These findings offer an efficient scheme for the automated production of regolithbased epoxy composites with precise structural, temperature-resistant, and favorable mechanical properties.
Establishing a permanent, self-sufficient habitat for humans on planetary bodies is critical for successful space exploration. In-situ resource utilisation (ISRU) of locally available resources offers the possibility of an energy-efficient and cost-effective approach. This paper considers the high-temperature processing of molten lunar regolith under conditions which represent the lunar environment, namely low gravity, low temperature, and negligible atmospheric pressure. The rheological properties of the low-titanium lunar mare regolith simulant JSC-1A are measured using concentric cylinder rheometry and these results are used to explore the influence of viscosity on processing operations involving the flow of molten regolith for fabricating construction components on the Moon surface. These include the delivery of molten regolith within an extrusion-based 3D printing technique and the ingress of molten regolith into porous structures. The energy and power required to establish and maintain sufficiently high temperatures for the regolith to remain in the liquid state are also considered and discussed in the context of lunar construction.
The construction of lunar bases has become a new target for lunar exploration by many space powers worldwide. Sintered lunar regolith is one of the most promising building materials for in situ resource utilization (ISRU). Spark plasma sintering (SPS) technology has the advantageous features of a fast sintering speed and high density. This study explored the feasibility of sintering a HUST-1 lunar regolith simulant using SPS technology. The physical, mechanical, and thermal properties, as well as the microstructure and phase composition of the sintered samples were investigated at multiple scales. In addition, the effects of the SPS conditions on the sintering results were studied, including the sintering temperature, heating rate, and applied pressure. The test results indicated that the sintering conditions significantly affected the sintered products. Finally, the thermal shock resistances of the sintered samples were investigated at simulated lunar temperatures. The samples were treated at two different temperature ranges, one from -60 to 60 degrees C (+60 degrees C) and another from -120 to 120 degrees C (+120 degrees C). The results showed that the sintered samples exhibited excellent thermal shock resistance in the extreme temperature environment of the lunar surface. After 100 thermal test cycles at + 60 degrees C and + 120 degrees C, the compressive strength increased by 16.0 % and 33.4 %, respectively. The reason for the increase in strength remains unclear. The Brunauer-Emmett-Teller (BET) test results showed that this may be caused by the gradual disappearance of micropores smaller than 10 nm during thermal cycling. (c) 2023 COSPAR. Published by Elsevier B.V. All rights reserved.