The frequent occurrence of earthquakes worldwide has rendered highway slope protection projects highly vulnerable to damage from seismic events and their secondary disasters. This severely hampers the smooth implementation of post-disaster rescue and recovery efforts. To address this challenge, this study proposes a comprehensive method for assessing seismic losses in slope protection projects, incorporating factors such as topography and elevation to enhance its universality. The method categorizes seismic losses into two main components: damage to protection structures and costs associated with landslide and rockfall clearance and transportation. This study estimates the cost range for common protection structures and clearance methods under general conditions based on widely recognized quota data in China. It establishes criteria for classifying the damage states of protection structures and provides loss ratio values based on real-world seismic examples and expert experience, constructing a model for assessing damage losses. Additionally, by summarizing the geometric characteristics of soil and rock accumulations on road surfaces, a method for estimating landslide volumes is proposed, considering the dynamic impact of slope gradients on clearance and transportation volumes, and a corresponding cost assessment model for clearance and transportation is developed. The feasibility and reliability of the proposed method are verified through two case studies. The results demonstrate that the method is easy to implement and provides a scientific basis for improving relevant standards and practices. It also offers an efficient and scientific tool for loss assessment to industry practitioners.
This paper examines the effects of near-field pulse-like earthquake ground motions (GMs) on the seismic resilience, repair cost and time, and structural collapse risk of low-to-high-rise selected multi-story RC structures with special moment-resisting frames (SMRFs) and shear walls. Selected 5-, 10-, and 15-story structures are designed based on a seismically active region where pulse-like GMs are more likely to occur. Two different sets of near-field GMs are chosen based on the recommendations of FEMA P-695 to conduct nonlinear dynamic analyses. Subsequently, the methodology provided in FEMA P-58 is adopted to perform a comprehensive seismic performance assessment at various hazard levels. It is shown that the consideration of the effects of near-field pulse-like GMs can considerably increase the risk of structural collapse in RC shear wall systems, based on the ratio of the pulse period of ground motion records to the elastic first mode period, in comparison to the near-field GMs without a pulse. It is concluded that the stated ratio is a crucial parameter to assess the risk to the life safety (LS) of low-to-high-rise RC buildings. For frequently occurring seismic intensities, repairable damage to nonstructural elements is the main factor contributing to the total expected economic loss in the studied buildings, irrespective of the selected GM set and the number of stories. In addition, the contribution of collapse and demolition due to residual drift in the estimation of repair time is significant for pulse-like GMs.
Multi-span reinforced concrete (RC) curved box-girder bridges are commonly designed to facilitate traffic flow at highway interchanges. The Aksemsettin Viaduct (henceforth, A Viaduct for brevity) in Istanbul, Turkey, is an eleven-span interchange bridge with a total length of 596.8 m. Located in a high seismicity zone, the A Viaduct is designed with a curved deck, multiple bearings that have different isolation mechanisms at different bents and directions, ten rectangular columns with unequal heights, and a mix of pile foundations and spread footings. The significant length of the viaduct crossed by eleven spans also makes it susceptible to varying ground motion excitations at different foundations. To evaluate the effects of the degree of modeling detail and analysis complexity on the estimated seismic performance, the present study conducts a comprehensive fragility assessment of the specimen viaduct under various ground motion excitation schemes. First, a three-dimensional finite element model is developed with detailed simulations for the deck, columns, bearings, foundations, and abutment components. To enable different ground motion excitations at each foundation, 57 sets of spatially varying ground motions are simulated by considering the realistic surface topography and soil stratigraphy at the bridge site. Cyclic pushover analyses are performed along multiple loading directions to develop the directiondependent capacity limit state models for hollow rectangular columns. Subsequently, a demand-capacity ratio method is utilized to develop reliable fragility models for bridge columns. Component- and system-level fragilities of the A Viaduct are then assessed under uniform versus multi-support excitations, vertical motions, and ground motions with varying incidence angles. To further capture the seismic damage discrepancies of the same components at different locations, seismic repair cost ratios of the A Viaduct are assessed when subjected to uniform and multi-support excitations. This study highlights the significance of considering multi-support excitations to achieve more realistic seismic fragility and loss estimates for multi-span long curved highway bridges.
Multiple research studies and seismic data analyses have shown that multi-directional long-period ground motion affects crucial and intricate large-scale structures like oil storage containers, long-span bridges, and high-rise buildings. Seismic damage data show a 3-55% chance of long-period ground motion. To clarify, the chance of occurrence is 3% in hard soil and 83% in soft soil. Due of the above characteristics, the aseismic engineering field requires a realistic stochastic model that accounts for long-period multi-directional ground motion. A weighted average seismic amplification coefficient selected NGA database multi-directional long-period ground motion recordings for this study. Due to the significant low-frequency component in the long-period ground motion, this research uses empirical mode decomposition (EMD) to efficiently decompose it into a composite structure with high- and low-frequency components. Given the above, further investigation is needed on the evolutionary power spectrum density (EPSD) functions of high- and low-frequency components. Analyzing the recorded data will reveal these functions and their corresponding parameters. Proper orthogonal decomposition (POD) is needed to simulate samples of high- and low-frequency components in different directions. These samples can be combined to illustrate multi-directional long-period ground motion. Representative samples exhibit the seismic characteristics of long-period multi-directional ground motion, as shown by numerical examples. This proves the method's engineering accuracy and usefulness. Moreover, this study used incremental dynamic analysis (IDA) to apply seismic vulnerability theory. This study investigated whether long-period ground motions in both x and multi-directional directions could enhance the seismic response of a high-rise frame structure. By using this method, a comprehensive seismic economic loss rate curve was created, making economic loss assessment clearer. This study shows that multi-directional impacts should be included when studying seismic events and calculating structure economic damages.