共检索到 10

Atmospheric brown carbon (BrC), a short-lived climate forcer, absorbs solar radiation and is a substantial contributor to the warming of the Earth ' s atmosphere. BrC composition, its absorption properties, and their evolution are poorly represented in climate models, especially during atmospheric aqueous events such as fog and clouds. These aqueous events, especially fog, are quite prevalent during wintertime in Indo-Gangetic Plain (IGP) and involve several stages (e.g., activation, formation, and dissipation, etc.), resulting in a large variation of relative humidity (RH) in the atmosphere. The huge RH variability allowed us to examine the evolution of water-soluble brown carbon (WS-BrC) diurnally and as a function of aerosol liquid water content (ALWC) and RH in this study. We explored links between the evolution of WS-BrC mass absorption efficiency at 365 nm (MAE WS- BrC-365 ) and chemical characteristics, viz., low-volatility organics and water-soluble organic nitrogen (WSON) to water-soluble organic carbon (WSOC) ratio (org-N/C), in the field (at Kanpur in central IGP) for the first time worldwide. We observed that WSON formation governed enhancement in MAE WS-BrC-365 diurnally (except during the afternoon) in the IGP. During the afternoon, the WS-BrC photochemical bleaching dwarfed the absorption enhancement caused by WSON formation. Further, both MAE WS-BrC-365 and org-N/C ratio increased with a decrease in ALWC and RH in this study, signifying that evaporation of fog droplets or bulk aerosol particles accelerated the formation of nitrogen-containing organic chromophores, resulting in the enhancement of WS-BrC absorptivity. The direct radiative forcing of WS-BrC relative to that of elemental carbon (EC) was -19 % during wintertime in Kanpur, and - 40 % of this contribution was in the UV -region. These findings highlight the importance of further examining the links between the evolution of BrC absorption behavior and chemical composition in the field and incorporating it in the BrC framework of climate models to constrain the predictions.

期刊论文 2024-06-20 DOI: 10.1016/j.scitotenv.2024.172506 ISSN: 0048-9697

Different salt types have different effects on the liquid water content of saline soil, resulting in differences in the physico-mechanical properties and water/salt migration process of saline soil. In order to investigate the phase transition process and the change of the liquid water content in composite saline soil, saline soils with the same total salt content and different ratios of sodium chloride and sodium sulfate were taken as the objects. The results indicated that two phase transitions occur in the saline soil with single salt type, while three phase transitions can be found in the composite saline soil with two salt types. Mirabilite crystallization contributes to the 1st phase transition, mirabilite and ice precipitate together in the 2nd phase transition process, and mirabilite, ice, and hydrohalite precipitate simultaneously in the 3rd phase transition process. The liquid water is reduced in the phase transition process during cooling, and the pore characteristic has been changed significantly. The change of the liquid water content reflects the processes of salt crystallization and ice formation in saline soil, then the amounts of ice and hydrated salt were calculated at different temperatures, and the mechanism of inhibiting the deformation of sulfate saline soil was examined by adding sodium chloride. The results have reference value for those seeking understanding of the deformation in natural composite saline soil, and these findings can provide theoretical basis for the phase transition mechanism of saline soil in cold regions.

期刊论文 2024-05-01 DOI: 10.1016/j.coldregions.2024.104174 ISSN: 0165-232X

Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling. This study emphasized the influence of the initial soil temperature (ST) and soil moisture (SM) conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau (TP) using the Community Land Model version 5.0 (CLM5.0). The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic, and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site. Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes. The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost, which coexists with soil liquid water (SLW), and soil ice (SI) when the ST is below freezing temperature, effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes. Consequently, the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method. Three modified initial soil schemes experiments resulted in a 64%, 88%, and 77% reduction in the average mean bias error (MBE) of ST, and a 13%, 21%, and 19% reduction in the average root-mean-square error (RMSE) of SLW compared to the default simulation results. Also, the average MBE of net radiation was reduced by 7%, 22%, and 21%.

期刊论文 2024-02-01 DOI: http://dx.doi.org/10.1007/s00376-023-3100-z ISSN: 0256-1530

The discovery that most of the prokaryotic diversity and biomass on Earth resides in the deep subsurface, calls for an improved definition of habitability, which should consider the existence of dark biospheres in other planets and moons of the Solar System and beyond. The discovery of interior liquid water worlds on some ice moons with waterless surfaces has piqued wide astrobiological interest, but the sporadic mentions of the possibility of life in the deep subsurface of rocky planets in recent habitability reviews calls for a methodical effort to develop sufficient knowledge, both scientific and technological, to include the dark biospheres in our habitability assessments. In this review we analyze recent developments and the methodologies employed to characterize Earth's continental hard rock deep subsurface to both prepare the future exploration of the putative dark biosphere of Mars and to highlight its importance when evaluating planetary habitability.

期刊论文 2023-08-04 DOI: 10.3389/fspas.2023.1203845 ISSN: 2296-987X

Affected by global warming, permafrost thawing in Northeast China promotes issues including highway subgrade instability and settlement. The traditional design concept based on protecting permafrost is unsuitable for regional highway construction. Based on the design concept of allowing permafrost thawing and the thermodynamic characteristics of a block-stone layer structure, a new subgrade structure using a large block-stone layer to replace the permafrost layer in a foundation is proposed and has successfully been practiced in the Walagan-Xilinji of the Beijing-Mohe Highway to reduce subgrade settlement. To compare and study the improvement in the new structure on the subgrade stability, a coupling model of liquid water, vapor, heat and deformation is proposed to simulate the hydrothermal variation and deformation mechanism of different structures within 20 years of highway completion. The results show that the proposed block-stone structure can effectively reduce the permafrost degradation rate and liquid water content in the active layer to improve subgrade deformation. During the freezing period, when the water in the active layer under the subgrade slope and natural ground surface refreezes, two types of freezing forms, scattered ice crystals and continuous ice lenses, will form, which have different retardation coefficients for hydrothermal migration. These forms are discussed separately, and the subgrade deformation is corrected. From 2019 to 2039, the maximum cumulative settlement and the maximum transverse deformation of the replacement block-stone, breccia and gravel subgrades are -0.211 cm and +0.111 cm, -23.467 cm and -1.209 cm, and -33.793 cm and -2.207 cm, respectively. The replacement block-stone subgrade structure can not only reduce the cumulative settlement and frost heave but also reduce the transverse deformation and longitudinal cracks to effectively improve subgrade stability. However, both the vertical deformation and transverse deformation of the other two subgrades are too large, and the embankment fill layer will undergo transverse deformation in the opposite direction, which will cause sliding failure to the subgrades. Therefore, these two subgrade structures cannot be used in permafrost regions. The research results provide a reference for solving the settlement and deformation problems of subgrades in degraded permafrost regions and contribute to the development and application of complex numerical models related to water, heat and deformation in cold regions.

期刊论文 2022-09-01 DOI: 10.3390/w14172642

Interactions between clouds and black carbon (BC) represent a significant uncertainty in aerosol radiative forcing. To investigate the influence of cloud processing on the scavenging of BC, concurrent measurement of individual cloud droplet residue particles (cloud RES) and interstitial particles (cloud INT) throughout a cloud event was deployed at Mt. Tianjing (1690 m a.s.l.) in southern China. An aethalometer (AE-33), a single particle aerosol mass spectrometer (SPAMS) and a scanning mobility particle sizer (SMPS) were used to investigate the mass concentration of equivalent BC (EBC), size-resolved number of BC-containing particles, and size-resolved number concentration of submicron particles in real-time, respectively. The number-based SEs of the submicron particles varied between 2.7 and 31.1%. Mass scavenging efficiency (MSE) ranged from 4.7% to 52.6% for EBC, consistent with the number-based SE (from 11.3% to 59.6%) of the BC-containing particles throughout the cloud event. Several factors that may influence the SEs of the BC-containing particles are considered and examined. SEs are most likely determined by a single factor, i.e., liquid water content (LWC), with R-2 > 0.8 in a power function throughout the cloud event. Stage-resolved investigation of SEs further reveals that particle size matters more than other factors in the cloud formation stage, whereas there is an increasing role of the mixing state in the development and stability stage. We also observed lower SEs for the BC-containing particles internally mixed organics, consistent with previous literature.

期刊论文 2021-01-01 DOI: 10.1016/j.atmosenv.2020.117883 ISSN: 1352-2310

Black carbon (BC) induced indirect radiative forcing and cloud albedo effect has been studied for the first time over northeast India. Measurements of BC and cloud microphysical parameters were carried out during Phase-I of the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) over northeast India (Guwahati) in 2009. Liquid water path (LWP) in the cloud layers coherent with BC on different experimental days was found to be 206-327 g m(-2) over the region. Black carbon aerosol indirect effect (BCIE) for fixed LWP is found to be 0.32-0.48 on different days of observations. The indirect forcing corresponding to this BCIE has been estimated using a radiative transfer model for fixed LWP by altering the derived BC-AOD (aerosol optical depth from measured BC profiles) and cloud effective radius (R-e) combinations. The estimated average BC-induced indirect forcing (BCIF) was -24 to -37.1 W m(-2) at the surface and +2.5 to +14.8 W m(-2) at the top of the atmosphere (TOA). The average albedo due to BCIF at TOA was 0.49-0.61. BCIF is found to reduce the cloud reflection by 1.5-2% over the region. The sensitivities of cloud parameters to BCIF and the albedo effect are illustrated.

期刊论文 2016-10-01 DOI: 10.1002/qj.2878 ISSN: 0035-9009

This paper reviews measurement techniques and corresponding devices used to determine the physical properties of the seasonal snowpack from distances close to the ground surface. The review is placed in the context of the need for scientific observations of snowpack variables that provide inputs for predictive hydrological models that help to advance scientific understanding of geophysical processes related to snow in the near-surface cryosphere. Many of these devices used to measure snow are invasive and require the snowpack to be disrupted, thereby precluding the possibility for multiple measurements to be made at the same sampling location. Moreover, many devices rely on the use of empirical calibration equations that may not be valid at all geographic locations. The spatial density of observations with most snow measurement devices is often inadequate. There is a need for improved automation of snowpack measurement instrumentation with an emphasis on field-based feedback of measurement validity in lieu of postprocessing of samples or data at a lab or office location. The scientific future of snow measurement instrumentation thereby requires a synthesis between science and engineering principles that takes into consideration geophysics and the physics of device operation.

期刊论文 2015-06-01 DOI: 10.1002/2015RG000481 ISSN: 8755-1209

This article reports observational evidence of Black Carbon (BC) induced cloud burning effect (Semi direct effect) for the first time over a mountainous location in North east India. Simultaneous aircraft observations of Black Carbon (BC) mass concentrations and cloud microphysical parameters were carried out over Guwahati, in Northeast India during Cloud Aerosol Interactions and Precipitation Enhancement Experiment (CAIPEEX) Phase-I in 2009. Elevated pollution layers of BC (concentration exceeding 1 mu g m(-3)) were observed over the site up to 7 km on different experimental days (August 30, September 4 and 6 in 2009) in the cloud regime. The vertical heating rate and radiative forcing induced by elevated BC layers in the cloud regime were estimated using an optical model along with a radiative transfer model. The instantaneous vertical heating rate induced by BC in cloud layers is found to be as high as 2.65 K/day. The instantaneous vertical heating by BC is found to be inducing a significant reduction in the measured cloud liquid water content (LWC) over the site. Subsequently, the BC stimulated heating has been found to be reducing the cloud fraction (CFR) and thus inducing a cloud burning effect (Semi direct effect), over the region. The estimated instantaneous BC induced radiative forcing in the cloud regime is found to be +12.7-+45.1 W m(-2) during the experimental periods. This large warming and reduction in cloudiness can decrease the precipitation over the region. However, more simultaneous BC-cloud observations and further research are necessary to establish a stable semi-direct effect over the region. (C) 2014 Elsevier Ltd. All rights reserved.

期刊论文 2014-12-01 DOI: 10.1016/j.atmosenv.2014.09.034 ISSN: 1352-2310

Among the key-parameters to characterize habitability are presence or availability of liquid water, an appropriate temperature range, and the time scale of reference. These criteria for habitability are discussed and described from the point of view of water- and ice-physics, and it is shown that liquid water may exist in the sub-surfaces of planetary bodies like Mars, and possibly of inner asteroids and internally heated ice-moons. Water can remain fluid there also at temperatures far below the canonical 0 A degrees C. This behaviour is made possible as a consequence of the freezing point depression due to salty solutes in water or brines, as they can be expected to exist in nature more frequently than pure liquid water. On the other hand, low temperatures cause a slowing down of chemical processes, as can be described by Arrhenius's relation. The resulting smaller reaction rates probably will have the consequence to complicate the detection of low-temperature life processes, if they exist. Furthermore, the adaptation potential of life is to be mentioned in this context as a yet partially unknown process. Resulting recommendations are given to improve the use of criteria to characterize habitable conditions.

期刊论文 2012-06-01 DOI: 10.1007/s11084-012-9278-1 ISSN: 0169-6149
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-10条  共10条,1页