Liquid storage tanks are often arranged in rows with small spacing in practical applications, which may cause mutual influence under earthquake action and even aggravate the seismic damage of liquid storage tanks. Adding the vibration barrier (ViBa) into the foundation between the adjacent liquid storage tanks forms a new type of seismic control method. Considering important factors such as liquid-solid-soil coupling, liquid sloshing behavior, and structure-soil-structure interaction (SSSI), a refined 3D numerical calculation model of the adjacent liquid storage tanks with three ViBas is established by ADINA. The influence of seismic wave incidence angle on the seismic responses of the liquid storage tanks and the control effect of ViBa are studied, and the parameter influence analysis is carried out. The results show that the ViBa significantly control the seismic responses and liquid sloshing wave height of the adjacent liquid storage tanks, and the damping ratio of the liquid sloshing wave height is between 30% and 40%. When the seismic incidence angle is between 30(degrees) and 60(degrees), the dynamic responses of the liquid storage tank is larger. With the increase of the seismic incidence angle, the control effect of the ViBa on the effective stress, hoop stress, axial compressive stress, and liquid pressure first increases and then decreases. When the liquid storage tank is close to full state, the control effect is most significant at an incidence angle of 60(degrees), and the control effect of the ViBa on the liquid storage tank with medium height-diameter ratio is the best.
In the last decades, numerous liquid storage tanks have been affected by strong earthquakes, the damage observed ranges from the partial collapse to the total collapse of the storage tanks. Elephant-foot buckling is one of the most common failures observed in these structures, which can provoke their collapse and complete loss of contents. While hydrostatic and hydrodynamic loads typically impact the seismic response of tanks, the soil type on which they are built plays an important role in influencing their performance during earthquakes. However, the soil-tank interaction has not been considered in the seismic fragility analyses of continuously supported tanks. This research aims to evaluate the seismic fragility of a continuously supported wine storage tank with a particular focus on elephant-foot buckling considering the soil-tank interaction. A specific soil condition and a typical wine storage tank are evaluated utilizing pushover-based seismic analysis and the Capacity Spectrum Method (CSM). 3D nonlinear Finite Element (FE) models are developed considering the tank, foundation, and soil. Seven ground motion records compatible with the soil type are considered. The seismic fragility is estimated using the FE models and the ground motion records. Both unanchored and anchored conditions are evaluated. The obtained results show that for the considered case study, the anchored condition shows better seismic performance when compared to the unanchored condition.