Loose sandy soil layers are prone to liquefaction under strong earthquakes, causing damage to civil engineering structures inside or upon the liquefied ground. According to the present Japanese design guideline on liquefaction countermeasures for river levees, the entire depth of the liquefiable subsoil below river embankments should be improved. However, this approach is not economical against deep liquefiable subsoil. To rationalize the design approach, this contribution investigated the performance of a floating-type cement treatment method, in which only the shallower part of the liquefiable subsoil is reinforced. A series of centrifuge shaking table model tests was conducted under a 50g environment. The depth of improvement (cement treatment) was varied systematically, and the effect of the sloping ground was examined. The experimental results revealed that the settlements of river embankments can be reduced linearly by increasing the depth of improvement. Moreover, the acceleration of embankments can be reduced drastically by the vibration-isolation effect between the cement-treated soil and the liquefiable soil. These effects contribute to the safe retention of the embankment shape even when the liquefied sloping ground causes lateral flows. Towards practical implementation, discussions on the effect of permeability on cement-treated soil were expanded. Furthermore, the stress acting on cement-treated soil during shaking was measured using an acrylic block to explain the occurrence of cracks in the soil. (c) 2025 Japanese Geotechnical Society. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
Climate warming has been observed for some time in the permafrost regions on the Qinghai-Tibet Plateau (QTP), China, resulting in active layer thickening, shrinkage or expansion of thermokarst lakes, and reduced permafrost extent. Little is known, however, about the hydrological processes near thermokarst lakes and their influences on lake development. We employed ground-penetrating radar (GPR) profiling, topographic mapping and drilling to explore the interaction between hydrological processes and thermokarst lake development at a site on the QTP. The GPR data and borehole water-level measurements revealed spatio-temporal variation of the frost table and soil water storage, and indicated the main direction of subsurface flow through soil on hillslopes near the lake. The measurements hinted at the self-organised formation of lateral flow channels at the thawing frost table near the lake. The ensuing recharge of the lake is balanced by drainage from the deepest end of the lake, down the topographic gradient, as ascertained by coring and lake bed mapping. Such a process-based qualitative understanding is crucial for assessing the impact of climate change, in conjunction with the local topography and hydrogeology, on the evolution of thermokarst lakes on the QTP. Copyright (c) 2014 John Wiley & Sons, Ltd.