Landslide mitigation is one of the major challenges occurring in hilly and mountainous regions worldwide. Various civil construction-based options, such as constructing walls and making fences using wires and metallic mesh, are regularly employed in attempts to reduce the hazard, but these measures are temporary solutions to stop the movement of unstable soil. The problem of unstable soils could be solved by increasing the vegetation on the hilltops and mountains where soil erosion and mass movements are predominant. A bioengineering approach could resolve this problem in a sustainable way and without damaging the environment. Various methods and approaches have been adopted worldwide for landslide mitigation and are discussed and critically analyzed in this article. The effectiveness of bamboo plantations on the hilltops and the use of specific species as determined by the soil characteristics are discussed and elaborated. Some research gaps in the existing bioengineering aspects and scope of research are highlighted for further improvement and refinement.
In recent years, vegetation plays a key role in landslide stability under extreme rainfall in the Three Gorges Reservoir area, so it is very important to identify the mechanism of vegetation slope protection. This study takes wildcat landslide in Three Gorges Reservoir area as the research object, using indoor landslide model test and building monitoring systems such as stress field, displacement field, and soil erosion, to illustrate the protective effect of typical vegetation. Furthermore, Bermuda cover effectively reduces pore water pressure, pore soil pressure, displacement, and turbidity. In particular, the three stages of interception and buffering of rainfall by stems and leaves, infiltration and absorption of rainfall by the root system, and the reinforcement of the slope against sliding forces by the root system have been divided. Moreover, these findings offer valuable preliminary insights for guiding landslide mitigation strategies in the Three Gorges Reservoir area.