共检索到 27

Highlights What are the main findings? Permafrost in the Muri area responded to human disturbance without significant spatial expansion during 2000-2024. The semi-arid climate, rough terrain, thin root zone and gappy vertical structure underneath were the major factors. What are the implications of the main findings? Annual ALT estimated from 2000 to 2024 filled the data gap of high-resolution ALT in the Muri area. Knowledge was provided for a better understanding of alpine permafrost development.Highlights What are the main findings? Permafrost in the Muri area responded to human disturbance without significant spatial expansion during 2000-2024. The semi-arid climate, rough terrain, thin root zone and gappy vertical structure underneath were the major factors. What are the implications of the main findings? Annual ALT estimated from 2000 to 2024 filled the data gap of high-resolution ALT in the Muri area. Knowledge was provided for a better understanding of alpine permafrost development.Abstract Alpine permafrost plays a vital role in regional hydrology and ecology. Alpine permafrost is highly sensitive to climate change and human disturbance. The Muri area, which is located in the headwaters of the Datong River, northeast of the Tibetan Plateau, has undergone decadal mining, and the permafrost stability there has attracted substantial concerns. In order to decipher how and to what extent the permafrost in the Muri area has responded to the decadal mining in the context of climate change, daily MODIS land surface temperatures (LSTs) acquired during 2000-2024 were downscaled to 30 m x 30 m. The active layer thickness (ALT)-ground thaw index (DDT) coefficient was derived from in situ ALT measurements. An annual ALT of 30 m x 30 m spatial resolution was subsequently estimated from the downscaled LST for the Muri area using the Stefan equation. Validation of the LST and ALT showed that the root of mean squared error (RMSE) and the mean absolute error (MAE) of the downscaled LST were 3.64 degrees C and -0.1 degrees C, respectively. The RMSE and MAE of the ALT estimated in this study were 0.5 m and -0.25 m, respectively. Spatiotemporal analysis of the downscaled LST and ALT found that (1) during 2000-2024, the downscaled LST and estimated ALT delineated the spatial extent and time of human disturbance to permafrost in the Muri area; (2) human disturbance (i.e., mining and replantation) caused ALT increase without significant spatial expansion; and (3) the semi-arid climate, rough terrain, thin root zone and gappy vertical structure beneath were the major controlling factors of ALT variations. ALT, estimated in this study with a high resolution and accuracy, filled the data gaps of this kind for the Muri area. The ALT variations depicted in this study provide references for understanding alpine permafrost evolution in other areas that have been subject to human disturbance and climate change.

期刊论文 2025-10-19 DOI: 10.3390/rs17203482

The Land Surface Temperature (LST) is well suited to monitor biosphere-atmosphere interactions in forests, as it depends on water availability and atmospheric/meteorological conditions above and below the canopy. Satellite-based LST has proven integral in observing evapotranspiration, estimating surface heat fluxes and characterising vegetation properties. Since the radiative regime of forests is complex, driven by canopy structure, components radiation properties and their arrangement, forest radiative temperatures are subject to strong angular effects. However, this depends on the scale of observation, where scattering mechanisms from canopy-to satellite-scales influence anisotropy with varying orders of magnitude. Given the heterogeneous and complex nature of forests, multi-angular data collection is particularly difficult, necessitating instrumentation distant enough from the canopy to obtain significant canopy brightness temperature and concurrent observations to exclude turbulence/atmospheric effects. Accordingly, current research and understanding on forest anisotropy at varying scales (from local validation level to satellite footprint) remain insufficient to provide practical solutions for addressing angular effects for upcoming thermal satellite sensors and associated validation schemes. This study presents a novel method founded in the optical remote sensing domain to explore the use of microcanopies that represent forests at different scales in the footprint of a multi-angular goniometer observing system. Both Geometric Optical (GO) and volumetric scattering dominated canopies are constructed to simulate impacts of anisotropy in heterogeneous and homogeneous canopies, and observed using a thermal infrared radiometer. Results show that heterogeneous canopies dominated by GO scattering are subject to much higher magnitudes of anisotropy, reaching maximum temperature differences of 3 degrees C off-nadir. Magnitudes of anisotropy are higher in sparse forests, where the gap fraction and crown arrangement (inducing sunlit/shaded portions of soil and vegetation) drive larger off-nadir differences. In dense forests, anisotropy is driven by viewing the maximum portion of sunlit vegetation (hotspot), where the soil is mostly obscured. Canopy structural metrics such as the fractional cover and gap fraction were found to have significant correlation with off-nadir differences. In more homogeneous canopies, anisotropy reaches a lower magnitude with temperature differences up to 1 degrees C, driven largely by volumetric scattering and components radiation properties. Optimal placement of instrumentation at the canopy-scale (more heterogeneous behaviour due to proximity to the canopy and small pixel size) used to validate satellite observations (more homogeneous behaviour due to larger pixel size) was found to be in cases of viewing maximum sunlit vegetation, for dense canopies. Given upcoming high spatial resolution sensors and associated validation schemes needed to benchmark LST and downstream products such as evapotranspiration, a better understanding of anisotropy over forests is critical to provide accurate, long-term and multi-sensor products.

期刊论文 2025-08-15 DOI: 10.1016/j.rse.2025.114766 ISSN: 0034-4257

Component temperature and emissivity are crucial for understanding plant physiology and urban thermal dynamics. However, existing thermal infrared unmixing methods face challenges in simultaneous retrieval and multicomponent analysis. We propose Thermal Remote sensing Unmixing for Subpixel Temperature and emissivity with the Discrete Anisotropic Radiative Transfer model (TRUST-DART), a gradient-based multi-pixel physical method that simultaneously separates component temperature and emissivity from non-isothermal mixed pixels over urban areas. TRUST-DART utilizes the DART model and requires inputs including at-surface radiance imagery, downwelling sky irradiance, a 3D mock-up with component classification, and standard DART parameters (e.g., spatial resolution and skylight ratio). This method produces maps of component emissivity and temperature. The accuracy of TRUST-DART is evaluated using both vegetation and urban scenes, employing Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images and DART-simulated pseudo-ASTER images. Results show a residual radiance error is approximately 0.05 W/(m2 & sdot;sr). In absence of the co-registration and sensor noise errors, the median residual error of emissivity is approximately 0.02, and the median residual error of temperature is within 1 K. This novel approach significantly advances our ability to analyze thermal properties of urban areas, offering potential breakthroughs in urban environmental monitoring and planning. The source code of TRUSTDART is distributed together with DART (https://dart.omp.eu).

期刊论文 2025-07-01 DOI: 10.1016/j.rse.2025.114738 ISSN: 0034-4257

The accelerated warming in the Arctic poses serious risks to freshwater ecosystems by altering streamflow and river thermal regimes. However, limited research on Arctic River water temperatures exists due to data scarcity and the absence of robust methodologies, which often focus on large, major river basins. To address this, we leveraged the newly released, extensive AKTEMP data set and advanced machine learning techniques to develop a Long Short-Term Memory (LSTM) model. By incorporating ERA5-Land reanalysis data and integrating physical understanding into data-driven processes, our model advanced river water temperature predictions in ungauged, snow- and permafrost-affected basins in Alaska. Our model outperformed existing approaches in high-latitude regions, achieving a median Nash-Sutcliffe Efficiency of 0.95 and root mean squared error of 1.0 degrees C. The LSTM model learned air temperature, soil temperature, solar radiation, and thermal radiation-factors associated with energy balance-were the most important drivers of river temperature dynamics. Soil moisture and snow water equivalent were highlighted as critical factors representing key processes such as thawing, melting, and groundwater contributions. Glaciers and permafrost were also identified as important covariates, particularly in seasonal river water temperature predictions. Our LSTM model successfully captured the complex relationships between hydrometeorological factors and river water temperatures across varying timescales and hydrological conditions. This scalable and transferable approach can be potentially applied across the Arctic, offering valuable insights for future conservation and management efforts.

期刊论文 2025-06-01 DOI: 10.1029/2024WR039053 ISSN: 0043-1397

In this study, a novel data-driven approach is carried out to predict the pore pressure generation of liquefiable clean sands during cyclic loading. An extensive and comprehensive database of actual stress-controlled cyclic simple shear test results in terms of pore pressure time histories is gathered from a large number of experiments. While the classical machine learning (ML) algorithms help predict the number of liquefaction cycles in a few models, the desired level of accuracy in predicting the actual trend and robustness in pore pressure build-up is only achieved in deep learning (DL) methods. Results indicate that the Long-Short Term Memory (LSTM) working model, employed with Stacked LSTM and the Windowing data processing method, is necessary for making fairly good cyclic pore pressure build-up predictions. This study proposes a model that can ultimately be utilised to predict the pore pressure response of in-situ liquefiable sandy soil layers without resorting to plasticity-based complex theoretical models, which has been the current practice. The robustness achieved in the model reassures the reliability of the study, raising confidence in developing data-driven constitutive models for soils that have the potential to replace conventional plasticity-based theories.

期刊论文 2025-04-17 DOI: 10.1080/17486025.2025.2491493 ISSN: 1748-6025

Most of the robust artificial intelligence (AI)-based constitutive models are developed with synthetic datasets generated from traditional constitutive models. Therefore, they fundamentally rely on the traditional constitutive models rather than laboratory test results. Also, their potential use within geotechnical engineering communities is limited due to the unavailability of datasets along with the model code files. In this study, the data-driven constitutive models are developed using only laboratory test databases and deep learning (DL) techniques. The laboratory database was prepared by conducting cyclic direct simple shear (CDSS) tests on reconstituted sand, that is, PDX sand. The stacked long short-term memory (LSTM) network and its variants are considered for developing the predictive models of the shear strain (gamma [%]) and excess pore pressure ratio (ru) time histories. The suitable input parameters (IPs) are selected based on the physics behind the generation of ru and gamma (%) of the liquefiable sands. The predicted responses of gamma (%) and ru agree well in most cases and are used to predict the dynamic soil properties of the PDX sand. The same modeling framework is extended for other sand and compared with existing AI-based constitutive models to verify its practical applicability. In summary, it is observed that though the trained models predicted the time histories of ru and gamma reasonably well; however, they struggled to predict the hysteresis loops at higher cycles. Therefore, more research is needed to verify and enhance the predictability of existing AI-based models in the future before using them in practice for simulating cyclic response.

期刊论文 2025-04-01 DOI: 10.1002/nag.3939 ISSN: 0363-9061

Herein, we synthesized 34 novel tryptanthrin derivatives, among which T7NHCO-series compounds showed great antibacterial activity againstXanthomonas axonopodis pv. citri,Pseudomonas syringae pv. actinidiae, andRalstonia solanacearum with EC50 values ranging from 0.26 to 0.56 mu g/mL. Meanwhile, these compounds exhibited low cytotoxicity against HEK-293. Additionally, compound T7NHCO can inhibit biofilm formation, damage bacterial morphology, downregulate the expression of bacterial chemotaxis-related proteins, cause bacterial necrosis, and effectively control citrus and kiwifruit canker (the curative and protective efficiency is 79.35 and 88.31%, respectively) diseases. However, compound T7NHCO exhibited a significant phytotoxicity to tobacco. Subsequently, based on the characteristic of tobacco wilt disease being prone to outbreak in weakly acidic soil conditions, we introduced the pH-responsive ZIF-8 drug delivery system. Fortunately, T7NHCO@ZIF-8 nanoparticles exhibited low phytotoxicity and noticeable activity against tobacco wilt disease. Above all, T7NHCO@ZIF-8 nanoparticles may be a promising green lead agent against plant bacterial diseases.

期刊论文 2025-03-12 DOI: 10.1021/acs.jafc.4c12641 ISSN: 0021-8561

Unsaturated soil has complicated mechanical properties, such as stress path and suction history dependencies, due to the influence of the depositional environment and its own structure. To describe the complex behavior of unsaturated soils, a path-dependence aware LSTM-based framework is proposed, where the initial stress state of the soil sample is used as the initial network parameters. Compared with the LSTM model, this framework demonstrates faster training convergence and better prediction accuracy. This framework was used to simulate the mechanical behavior of unsaturated soils under complex loading paths where both stress and suction change simultaneously and is not limited to suction-controlled triaxial shear tests. The predictions using both synthetic data from the Barcelona basic model (BBM) and experimental data from Pearl clay and Nanyang expansive soil and unsaturated sand-bentonite mixtures show that the LSTM-based framework can predict phenomena such as wetting collapse, stress path dependence, strain softening, and strain hardening in unsaturated soils.

期刊论文 2025-03-01 DOI: 10.1016/j.compgeo.2025.107060 ISSN: 0266-352X

Radiative transfer models (RTMs) designed to reproduce the anisotropy of surface brightness temperature (BT) are particularly useful for applications on Earth's energy budget when using remote sensing (RS) datasets. Despite the fact that several thermal infrared (TIR) RTMs have been developed, a quantitative analysis comparing the benefits and limits of these models remains necessary. Herein, three modeling frameworks (physical hybrid, analytical parameterization, and kernel driven) have been evaluated comparatively for homogeneous vegetation, a row-planted crop, and a sparse forest. Airborne measurements and the discrete anisotropy radiative transfer (DART) model simulations were retained as the benchmark. Forward modeling and inverse fitting schemes were proposed for the sake of comparison. Results reveal that: 1) in the forward modeling scheme, from airborne measurements, the hybrid model performs better with root-mean-squared errors (RMSEs) of 0.17 degrees C, 1.57 degrees C, and 0.38 degrees C for homogenous, row-planted vineyard, and sparse forest scenes, respectively; the analytical model appears similar performant (0.17 degrees C, 0.40 degrees C) for the homogeneous and sparse forest scenes, but less performant (2.39 degrees C) for the row-planted scene and 2) in the inverse fitting scheme, the uncertainties (95% of probability) of model coefficients and predicted directional anisotropies were considered. The kernel-driven model has fewer modeling constraints and statistically performs better for the homogeneous and sparse forest scenes with RMSEs of 0.07 degrees C and 0.19 degrees C, respectively, whereas it is less efficient for the row-planted scene with RMSE of 0.80 degrees C. This study highlights the differences in accuracy between models of different complexity and provides reference information for researchers to improve existing models and for users to choose their best modeling solution.

期刊论文 2025-01-01 DOI: 10.1109/TGRS.2025.3530503 ISSN: 0196-2892

This paper describes the selected algorithm for the ESA climate change initiative vegetation parameters project. Multi- and hyper-spectral, multi-angular, or multi-sensor top-of-canopy reflectance data call for an efficient generic retrieval system which can improve the consistent retrieval of standard canopy parameters as albedo, Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and their uncertainties, and exploit the information to retrieve additional parameters (e.g. leaf pigments). We present a retrieval system for canopy and sub-canopy parameters (OptiSAIL), which is based on a model comprising SAIL (canopy reflectance), PROSPECT-D (leaf properties), TARTES (snow properties), a soil model (soil reflectance anisotropy, moisture effect), and a cloud contamination model. The inversion is gradient based and uses codes created by Automatic Differentiation. The full per pixel covariance-matrix of the retrieved parameters is computed. For this demonstration, single observation data from the Sentinel-3 SY_2_SYN (synergy) product is used. The results are compared with the MODIS 4-day LAI/fAPAR product and PhenoCam site photography. OptiSAIL produces generally consistent and credible results, at least matching the quality of the technically quite different MODIS product. The system is computationally efficient with a rate of 150 pixel s(-1) (7 ms per pixel) for a single thread on a current desktop CPU using observations on 26 bands. Not all of the model parameters are well determined in all situations. Significant correlations between the parameters are found, which can change sign and magnitude over time. OptiSAIL appears to meet the design goals and puts real-time processing with this kind of system into reach.

期刊论文 2024-12-01 DOI: 10.1016/j.srs.2024.100148 ISSN: 2666-0172
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共27条,3页