共检索到 786

This study investigates the microhardness and geometric degradation mechanisms of interfacial transition zones (ITZs) in recycled aggregate concrete (RAC) exposed to saline soil attack, focusing on the influence of supplementary cementitious materials (SCMs). Ten RAC mixtures incorporating fly ash (FA), granulated blast furnace slag (GBFS), silica fume (SF), and metakaolin (MK) at 10 %, 15 %, and 20 % replacement ratios were subjected to 180 dry-wet cycles in a 7.5 %MgSO4-7.5 %Na2SO4-5 %NaCl solution. Key results reveal that ITZ's microhardness and geometric degradation decreases with exposure depth but intensifies with prolonged dry-wet cycles. The FAGBFS synergistically enhances ITZ microhardness while minimizing geometric deterioration, with ITZ's width and porosity reduced to 67.6-69.0 mu m and 25.83 %, respectively. In contrast, FA-SF and FA-MK exacerbate microhardness degradation, increasing porosity and amplifying microcrack coalescence. FA-GBFS mitigates the diffusion-leaching of aggressive/original ions and suppresses the formation of corrosion products, thereby inhibiting the initiation and propagation of microcracks. In contrast, FA-SF and FA-MK promote the formation of ettringite/gypsum and crystallization bloedite/glauberite, which facilitates the formation of trunk-limb-twig cracks.

期刊论文 2025-10-01 DOI: 10.1016/j.cemconcomp.2025.106176 ISSN: 0958-9465

In performance-based design, it is crucial to understand deformation characteristics of geocell layers in soil under footing loads. To explore this, a series of laboratory loading tests were carried out to investigate the influence of varying parameters on the strain levels within the geocell layer in a sandy soil under axial strip footing loading. The results were analyzed in terms of maximum strain levels, strain variation along the geocell layer and the correlation between horizontal and vertical strains. In this study, the maximum observed strain levels for geocellreinforced strip footing systems reached 2.3 % for horizontal (tensile) strain and 1.4 % for vertical (compressive) strain. Furthermore, most strain levels were concentrated within a distance of 1.5 times the footing width from the axis of strip footing. In geocell-reinforced footing systems, the interaction between horizontal and vertical strains becomes a key factor, with the ratio of horizontal to vertical cell wall strains ranging approximately from 1 to 2.5. The outcomes of this study are expected to contribute to the practical applications of geocell-reinforced footing systems.

期刊论文 2025-10-01 DOI: 10.1016/j.geotexmem.2025.05.002 ISSN: 0266-1144

The discrete element method (DEM) has demonstrated significant advantages in simulating soil-tool interaction and an appropriate contact model notable affected the simulation accuracy. The accuracy of numerical simulation is compromised due to the variations in soil properties when tillage implements are employed in clay-moist soil conditions. This study aims to establish a discrete element model of clay-moist soil based on the Edinburgh Elasto-Plastic Adhesion (EEPA) contact model. Calibration tests using a combination of direct shear tests and cone penetration tests were conducted to identify sensitive parameters that need to be calibrated in the model and analyze the effects of each parameter. The results indicated that contact plasticity ratio and surface energy had significant influence on representing the mechanical properties of clay-moist soil. Then, by utilizing scanning technology to acquire furrow shape data, soil bin test was conducted to validate the reliability of the calibration parameters. Using sensitive parameters as variables, the actual value of clay-moist soil with a moisture content of 33 % as the target value obtained from experimental tests. The optimal combination was: the coefficient of static friction of 0.45, the coefficient of rolling friction of 0.18, and the surface energy of 27.95 J.m-2, the contact plasticity ratio of 0.59. The relative error between the simulated draft force value and the actual measured value was 7.98 %, and the relative errors in the furrow type parameters did not exceed 5 %. The accuracy of the calibration results was verified through comparative analysis of simulation and empirical results. This study provides a scientific approach for employing DEM in modeling clay-moist soil-tool interaction.

期刊论文 2025-10-01 DOI: 10.1016/j.compag.2025.110518 ISSN: 0168-1699

This paper deals with the contribution of the soil-structure interaction (SSI) effects to the seismic analysis of cultural heritage buildings. This issue is addressed by considering, as a case study, the Mosque-Cathedral of Cordoba (Spain). This study is focussed on the Abd al-Rahman I sector, which is the most ancient part, that dates from the 8th century. The building is a UNESCO World Heritage Site and it is located in a moderate seismic hazard zone. It is built on soft alluvial strata, which amplifies the SSI. Since invasive tests are not allowed in heritage buildings, in this work a non-destructive test campaign has been performed for the characterisation of the structure and the soil. Ambient vibration tests have been used to calibrate a refined 3D macro-mechanical-based finite element model. The soil parameters have been obtained through an in situ geotechnical campaign, that has included geophysical tests. The SSI has been accounted for by following the direct method. Nonlinear static and dynamic time-history analyses have been carried out to assess the seismic behaviour. The results showed that the performance of the building, if the SSI is accounted for, is reduced by up to 20 % and 13 % in the direction of the arcades and in the perpendicular direction, respectively. Also, if the SSI is taken into account, the damage increased. This study showed that considering the SSI is important to properly assess the seismic behaviour of masonry buildings on soft strata. Finally, it should be highlighted that special attention should be paid to the SSI, which is normally omitted in this type of studies, to obtain a reliable dynamic identification of the built heritage.

期刊论文 2025-09-15 DOI: 10.1016/j.jobe.2025.113061

Microbial Induced Calcium Carbonate Precipitation (MICP), recognized as a low-carbon and environmentally sustainable consolidation technique, faces challenges related to inhomogeneous consolidation. To mitigate this issue, this study introduces activated carbon into uranium tailings. The porous structure and adsorption capacity of activated carbon enhance bacterial retention time, increase the solidification rate, and promote the growth and distribution of calcium carbonate, resulting in more uniform consolidation and improved mechanical properties of the tailings. Additionally, a novel independently developed grouting method significantly enhances the mechanical strength of the tailing sand samples. To perform a micro-scale analysis of the samples, distinct activated carbon-tailings DEM models are constructed based on varying activated carbon dosages. Physical experiments and parameter calibration are employed to investigate the micro-mechanical properties, such as velocity field and force chain distribution. Experimental and simulation results demonstrate that incorporating activated carbon increases the calcium carbonate production during the MICP process. As the activated carbon content increases, the peak stress of the tailings initially rises and then declines, reaching its maximum at 1.5 % activated carbon content. At 100 kPa confining pressure, the peak stress is 2976.91 kPa, 1.23-1.59 times that of samples without activated carbon and 6.08-7.86 times that of unconsolidated samples. Micro-scale motion analysis reveals that particle movement is predominantly axial at the ends and radial near the central axis. The initial direction of the primary force chains aligns with the loading direction. Following failure, some primary force chains dissipate, while new chains form, predominantly along the axial direction and secondarily in the horizontal direction. Compared with samples without activated carbon, those containing activated carbon exhibit more uniform force chain distribution, higher stress levels, and greater peak stress. This study offers a novel approach to enhance the stabilization and solidification efficiency of MICP and establishes a DEM model that provides valuable insights into the structural deformation and micro-mechanical characteristics of MICPcemented materials.

期刊论文 2025-09-07 DOI: 10.1016/j.seppur.2025.132947 ISSN: 1383-5866

Climate change is transforming the ice-free areas of Antarctica, leading to rapid changes in terrestrial ecosystems. These areas represent <0.5% of the continent and coincide with the most anthropogenically pressured sites, where the human footprint is a source of contamination. Simultaneously, these are the locations where permafrost can be found, not being clear what might be the consequences following its degradation regarding trace element remobilisation. This raises the need for a better understanding of the natural geochemical values of Antarctic soils as well as the extent of human impact in the surroundings of scientific research stations. Permafrost thaw in the Western Antarctic Peninsula region and in the McMurdo Dry Valleys is the most likely to contribute to the remobilisation of toxic trace elements, whether as the result of anthropogenic contamination or due to the degradation of massive buried ice and ice-cemented permafrost. Site-specific locations across Antarctica, with abandoned infrastructure, also deserve attention by continuing to be a source of trace elements that later can be released, posing a threat to the environment. This comprehensive summary of trace element concentrations across the continent's soils enables the geographical systematisation of published results for a better comparison of the literature data. This review also includes the used analytical techniques and methods for trace element dissolution, important factors when reporting low concentrations. A new perspective in environmental monitoring is needed to investigate if trace element remobilisation upon permafrost thaw might be a tangible consequence of climate change.

期刊论文 2025-09-01 DOI: 10.1016/j.earscirev.2025.105171 ISSN: 0012-8252

Buried pipes are subjected to static and dynamic loads depending on their areas of use. To mitigate the risk of damage caused by these effects, various materials and reinforcement methods are utilized. In this study, five buried uPVC pipes designed in accordance with ASTM D2321 standards were reinforced with three different ground improvement materials: Geocell, Geonet, and Geocomposite, and experimentally subjected to dynamic impact loading. Acceleration, velocity, and displacement values were obtained from the experiments. Subsequently, finite element analysis (FEA) was performed using the ABAQUS software to determine stress values and volumetric displacements in the pipes, and the model was validated with a 5-7% error margin. In the final stage of the study, a parametric analysis was conducted by modifying the soil cover height above the pipe and the Geocell thickness in the validated finite element model. The parametric study revealed that the displacement value in the pipe decreased by 78% with an increase in soil cover height, while a 16% reduction was observed with an increase in Geocell thickness. The results demonstrate that the soil improvement techniques examined in this study provide an effective solution for enhancing the impact resistance of buried pipeline systems.

期刊论文 2025-09-01 DOI: 10.1016/j.tust.2025.106761 ISSN: 0886-7798

Hidden soil caves pose a serious threat to the stability and safety of subgrades. In this study, using the two-dimensional particle flow discrete element code, a total of eight subgrade models with circular soil caves of different dimensions, depths, and locations were established. Under self-weight and superimposed loading, the deformation characteristics of fill subgrade models, such as the evolution of displacement field and crack development process, were analyzed. The results show that under the self-weight, after the fill subgrade model of soil caves with diameters of 2 m, 4 m, 6 m, and 8 m is stable, the overlying soil layer of the soil cave corresponds to the transformation of slag falling, block falling, collapse and rapid collapse, respectively. The larger the dimension of the soil cave, the larger the number of cracks and damage areas, and the more prone the fill subgrade is to collapse. The superimposed load makes the fill subgrade compress from shallow to deep, significantly increasing the overall subgrade deformation, the number of cracks, and the development range. The evolution of the displacement field and crack propagation of the fill subgrade are also controlled by the buried depth and location of the soil cave. Whether the fill subgrade collapses is comprehensively controlled by the dimension and buried depth of the soil cave, the mechanical parameters of the soil layer, the load, and its scope of action. Thus, a comprehensive criterion of cylindrical collapse of the soil layer above the soil cave is constructed.

期刊论文 2025-09-01 DOI: 10.1016/j.engfailanal.2025.109716 ISSN: 1350-6307

Pile penetration in soft ground involves complex mechanisms, including significant alterations in the soil state surrounding the pile, which influence the pile negative skin friction (NSF) over time. However, the pile penetration process is often excluded from finite element analysis. This paper investigates the impact of pile penetration on the generation of NSF and dragload. A stable node-based smoothed particle finite element method (SNS-PFEM) framework is introduced for two-dimensional axisymmetric conditions and coupled consolidation, incorporating the ANICREEP model of soft soil with a modified cutting-plane algorithm. A field case study with penetration process is simulated to verify the numerical model's performance, followed by a parametric analysis on the effect of penetration rate on NSF during consolidation. Results indicate that without the pile penetration process in NSF analysis can result in an unsafely low estimation of NSF and dragload magnitudes. The penetration rate affects dragload only at the initial consolidation stage. As consolidation progresses, dragload converges to nearly the same magnitude across different rates. Additionally, current design methods inadequately predict the beta value (where beta is an empirical factor correlating vertical effective stress of soil with the pile skin friction) and its time dependency, for which a new empirical formula for the time-dependent beta value is proposed and successfully applied to other field cases.

期刊论文 2025-09-01 DOI: 10.1016/j.compgeo.2025.107315 ISSN: 0266-352X

Freeze-thaw cycles in seasonally frozen soil affect the boundary conditions of aqueducts with pile foundations, consequently impacting their seismic performance. To explore the damage characteristics and seismic behaviour of aqueduct bent frames in such regions, a custom testing apparatus with an integrated cooling system was developed. Two 1/15 scale models of reinforced concrete aqueduct bent frames with pile foundations were constructed and subjected to pseudo-static testing under both unfrozen and frozen soil conditions. The findings revealed that ground soil freezing has minimal impact on the ultimate bearing capacity and energy dissipation of the bent frame-pile-soil system, but significantly enhances its initial stiffness. Additionally, the frozen soil layer exerts a stronger embedding effect on the pile cap, ensuring the stability of the pile foundation during earthquakes. However, under large seismic loads, aqueduct bent frames experience greater damage and residual deformation in frozen soil compared to unfrozen soil conditions. Therefore, the presence of a seasonally frozen soil layer somewhat compromises the seismic performance of aqueduct bent frames. Subsequently, a finite element model considering pile-soil interaction (PSI) and frozen soil hydro-thermal effects was developed for aqueduct bent frames and validated against experimental results. This provides an effective method for predicting their seismic behaviors in seasonally frozen soil regions. Furthermore, based on the seismic damage characteristics of aqueduct bent frame with pile foundations observed in pseudo-static tests, a novel selfadaptive aqueduct bent frame system was designed to mitigate the adverse effects of seasonally frozen soil layer on seismic performance. This system is rooted in the principle of balancing resistance with adaptability, rather than solely depending on resistance. The seismic performance of this innovative system was then discussed, providing valuable insights for future seismic design of reinforced concrete aqueduct bent frames with pile foundations in seasonally frozen soil regions.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109491 ISSN: 0267-7261
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共786条,79页