共检索到 4

Small topographic features below the resolution of existing orbital data sets may create micro ultra-cold traps within the larger permanently shadowed regions that are present at the lunar poles. These ultra-cold traps are protected from the major primary and secondary illumination sources, and thus would create surfaces that are much colder than lower-resolution temperature maps would indicate. We examine this effect by creating a high resolution (1 m pix(-1)) terrain map based on upscaled data from the Lunar Orbiter Laser Altimeter. This map is illuminated by scattered sunlight and infrared emissions from sunlit terrain, which are then run through a thermal model to determine temperatures. We find that while most of the terrain experiences maximum temperatures around 50 K, there are a number of 1-30 m-scale ultra-cold traps with maximum temperatures as low as 20-30 K. By comparing our modeled ultra-cold trapping area to volatile abundances measured by Lunar Crater Observation and Sensing Satellite (LCROSS), we reveal a diverse environment where the surficial abundances necessary to explain the LCROSS results are strongly dependent on precisely where the impact occurred.

期刊论文 2024-07-01 DOI: 10.1029/2023JE007925 ISSN: 2169-9097

The Lunar CRater Observations and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket stage into a permanently shadowed region near the lunar south pole. The Sheperding Spacecraft (SSC) separated similar to 9 hours before impact and performed a small braking maneuver in order to observe the Centaur impact plume, looking for evidence of water and other volatiles, before impacting itself. This paper describes the registration of imagery of the LCROSS impact region from the mid- and near-infrared cameras onboard the SSC, as well as from the Goldstone radar. We compare the Centaur impact features, positively identified in the first two, and with a consistent feature in the third, which are interpreted as a 20 m diameter crater surrounded by a 160 m diameter ejecta region. The images are registered to Lunar Reconnaisance Orbiter (LRO) topographical data which allows determination of the impact location. This location is compared with the impact location derived from ground-based tracking and propagation of the spacecraft's trajectory and with locations derived from two hybrid imagery/trajectory methods. The four methods give a weighted average Centaur impact location of -84.6796A degrees, -48.7093A degrees, with a 1 sigma uncertainty of 115 m along latitude, and 44 m along longitude, just 146 m from the target impact site. Meanwhile, the trajectory-derived SSC impact location is -84.719A degrees, -49.61A degrees, with a 1 sigma uncertainty of 3 m along the Earth vector and 75 m orthogonal to that, 766 m from the target location and 2.803 km south-west of the Centaur impact. We also detail the Centaur impact angle and SSC instrument pointing errors. Six high-level LCROSS mission requirements are shown to be met by wide margins. We hope that these results facilitate further analyses of the LCROSS experiment data and follow-up observations of the impact region.

期刊论文 2012-05-01 DOI: 10.1007/s11214-011-9765-0 ISSN: 0038-6308

The primary objective of the Lunar Crater Observation and Sensing Satellite (LCROSS) was to confirm the presence or absence of water ice in a permanently shadowed region (PSR) at a lunar pole. LCROSS was classified as a NASA Class D mission. Its payload, the subject of this article, was designed, built, tested and operated to support a condensed schedule, risk tolerant mission approach, a new paradigm for NASA science missions. All nine science instruments, most of them ruggedized commercial-off-the-shelf (COTS), successfully collected data during all in-flight calibration campaigns, and most importantly, during the final descent to the lunar surface on October 9, 2009, after 112 days in space. LCROSS demonstrated that COTS instruments and designs with simple interfaces, can provide high-quality science at low-cost and in short development time frames. Building upfront into the payload design, flexibility, redundancy where possible even with the science measurement approach, and large margins, played important roles for this new type of payload. The environmental and calibration approach adopted by the LCROSS team, compared to existing standard programs, is discussed. The description, capabilities, calibration and in-flight performance of each instrument are summarized. Finally, this paper goes into depth about specific areas where the instruments worked differently than expected and how the flexibility of the payload team, the knowledge of instrument priority and science trades, and proactive margin maintenance, led to a successful science measurement by the LCROSS payload's instrument complement.

期刊论文 2012-05-01 DOI: 10.1007/s11214-011-9753-4 ISSN: 0038-6308

One of the most exciting recent developments in the field of lunar science has been the unambiguous detection of water (either as OH or H(2)O) or water ice on the Moon through instruments flown on a number of orbiting spacecraft missions. At the same time, continued laboratory-based investigations of returned lunar samples by Apollo missions using high-precision, low-detection, analytical instruments have for the first time, provided the absolute abundance of water (present mostly as structurally bound OH(-) in mineral phases) in lunar samples. These new results suggest that the Moon is not an anhydrous body, questioning conventional wisdom, and indicating the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. However, not all recent results point to a wet Moon and it appears that the distribution of water on the Moon may be highly heterogeneous. Additionally, a number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar-wind hydrogen with the lunar soil. Water on the Moon has implications for future astrobiological investigations as well as for generating resources in situ during future exploration of the Moon and other airless bodies in the Solar System.

期刊论文 2010-12-01 DOI: 10.1007/s11038-010-9377-9 ISSN: 0167-9295
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页