As a moderately volatile, redox-sensitive chalcophile and siderophile element, Te and its isotopic composition can inform on a multitude of geochemical and cosmochemical processes. However, the interpretation of Te data from natural settings is often hindered by an insufficient understanding of the behavior of Te in high-temperature conditions. Here, we present the results of Te evaporation and isotopic fractionation in silicate melting experiments. The starting material was boron-bearing anorthite-diopside glass with 1 wt% TeO2. The experiments were conducted over the temperature range of 868-1459 degrees C for 15 min each, and at oxygen fugacities (logfO(2)) relative to the fayalite-magnetite-quartz buffer (FMQ) of FMQ-6 to FMQ+1.5, and in air. Evaporation of Te decreases with decreasing fO(2). For high-temperature experiments performed at > 1200 degrees C Te loss is accompanied by Te isotope fractionation towards heavier compositions in the residual glasses. By contrast, Te loss in experiments performed at temperatures 1200 degrees C is alpha(K) = 0.99993. At reducing conditions, Te likely substitutes as Te2- for O2- in the melt structure and becomes increasingly soluble at highly reducing conditions. Consequently, Te evaporation is not predicted for volcanic processes on reduced planetary bodies such as the Moon or Mercury. (C) 2022 Elsevier Ltd. All rights reserved.
The isotopes of chlorine (Cl-37 and Cl-35) are highly fractionated in lunar samples compared to most other Solar System materials. Recently, the chlorine isotope signatures of lunar rocks have been attributed to large-scale degassing processes that occurred during the existence of a magma ocean. In this study we investigated how well a suite of lunar basalts, most of which have not previously been analyzed, conform to previous models. The Cl isotope compositions (delta Cl-37 (parts per thousand) = [(Cl-37/Cl-35(sample)/Cl-37/Cl-35(SMOC)) - 1] x 1000, where SMOC refers to standard mean ocean chloride) recorded range from similar to+7 to +14 parts per thousand (Apollo 15), +10 to +19 parts per thousand (Apollo 12), +9 to +15 parts per thousand (70017), +4 to +8 parts per thousand (MIL 05035), and +15 to +22 parts per thousand (Kalahari 009). The Cl isotopic data from the present study support the mixing trends previously reported by Boyce et al. (2015) and Barnes et al. (2016), as the Cl isotopic composition of apatites are positively correlated with bulk-rock incompatible trace element abundances in the low-Ti basalts, inclusive of low-Ti and KREEP basalts. This trend has been interpreted as evidence that incompatible trace elements, including Cl, were concentrated in the urKREEP residual liquid of the lunar magma ocean, rather than the mantle cumulates, and that urKREEP Cl had a highly fractionated isotopic composition. The source regions for the basalts were thus created by variable mixing between the mantle (Cl-poor and relatively unfractionated) and urKREEP. The high-Ti basalts show much more variability in measured Cl isotope ratios and scatter around the trend formed by the low-Ti basalts. Most of the data for lunar meteorites also fits the mixing of volatiles in their sources, but Kalahari 009, which is highly depleted in incompatible trace elements, contains apatites with heavily fractionated Cl isotopic compositions. Given that Kalahari 009 is one of the oldest lunar basalts and ought to have been derived from very early-formed mantle cumulates, a heavy Cl isotopic signature is likely not related to its mantle source, but more likely to magmatic or secondary alteration processes, perhaps via impact-driven vapor metasomatism of the lunar crust. (C) 2019 The Authors. Published by Elsevier Ltd.
The double spike technique has been used to measure the isotope fractionation and elemental abundance of Cd in nine lunar samples, the Brownfield meteorite and the Columbia River Basalt BCR-1, by thermal ionisation mass spectrometry. Lunar soil samples give a tightly grouped set of positive isotope fractionation values of between +0.42% and +0.50% per mass unit. Positive isotope fractionation implies that the heavy isotopes are enhanced with respect to those of the Laboratory Standard. A vesicular mare basalt gave zero isotope fractionation, indicating that the Cd isotopic composition of the Moon is identical to that of the Earth. A sample of orange glass from the Taurus-Littrow region gave a negative isotope fractionation of -0.23 +/- 0.06% per mass unit, presumably as a result of redeposition of Cd from the Cd-rich vapour cloud associated with volcanism. Cadmium is by far the heaviest element to show isotope fractionation effects in lunar samples. The volatile nature of Cd is of importance in explaining these isotope fractionation results. Although a number of mechanisms have been postulated to be the cause of isotope fractionation of certain elements in lunar soils, we believe that the most likely mechanisms are ion and particle bombardment of the lunar surface. (c) 2006 Elsevier B.V. All tights reserved.