共检索到 2

We use Aerosol Robotic Network (AERONET) observation data to empirically determine how natural and anthropogenic aerosol categories (i.e. mineral dust, biomass burning, and urban-industrial aerosols) affect light extinction, showing that their radiative forcing varies strongly with the surface albedo. Generally, the radiative forcing depends on the aerosol loading, but the efficiency varies with the aerosol type and aerosol-radiation-surface interactions. Desert dust, biomass burning and urban-industrial aerosols can exhibit dramatic shifts in radiative forcing at the top of the atmosphere, from cooling to warming, at surface albedos from below 0.5 to above 0.75. Based on the linear relationship between the radiative forcing efficiency and surface albedo for aeolian aerosols, using Moderate Resolution Imaging Spectroradiometer (MODIS) AOT (Aerosol Optical Thickness) and surface albedo data, we characterized a large Asian dust event during the spring of 2001, and demonstrate its immense spatially varying radiative forcing, ranging from about -84.0 to +69.3 W/m(2). For extensive Russian wildfires during the summer of 2010, strong radiative cooling forcing variability of biomass combustion aerosols is found, ranging from about -86.3 to +3.1 W/m(2). For a thick urban-industrial aerosol haze over northern India during the winter of 2017, a large range of about -85.0 to -0.3 W/m(2) is found. These wide ranges underscore the need to accurately define aerosol-radiation-surface interactions.

期刊论文 2019-11-15 DOI: 10.1016/j.atmosres.2019.07.001 ISSN: 0169-8095

We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis. (C) 2010 Published by Elsevier B.V.

期刊论文 2011-06-01 DOI: 10.1016/j.nimb.2010.11.091 ISSN: 0168-583X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页