The fatigue and damage characteristics of frozen soil under cyclic loading are highly dependent on the three-dimensional (3D) stress state, due to the anisotropic properties of the ground. Measuring and researching the deformation behavior and fatigue failure characteristics of frozen soil under complex 3D cyclic stress states are significant for the stability assessment of frozen soil when it is subjected to earthquakes and vehicular traffic. In this paper, a hollow cylindrical apparatus was used to simulate a cyclic stress state with constant values of principal stress direction angle (alpha), coefficient of intermediate principal stress(b), and amplitude of the first principal stress under -6degree celsius conditions. The influences of 3D stress parameters (alpha and b) on the deformation behavior, damage evolution, and fatigue failure characteristics of frozen silty clay were systematically investigated. The results indicated that the deformation of the samples was dominated by axial strain, when alpha < 15 degrees and b = 0. Furthermore, as the value b increased, both the accumulated axial strain and accumulated torsional shear strain exhibited a decreasing-then-increasing trend. When 30 degrees <=alpha <= 60 degrees, the deformation feature is primarily dominated by torsional shear direction. With the increase of the value b, the accumulated torsional shear strain increased rapidly, while the axial strain gradually decreases, and then in turn to compressive elongation deformation. The increase of 3D stress parameters leads to a decrease in accumulated torsional shear strain, absolute value of accumulated axial strain, number of cycles, and accumulated torsional shear dissipated energy density at the failure of frozen soil. This indicated that under cyclic stress conditions, the increase of 3D stress characteristic parameters accelerates the damage evolution and fatigue failure process of frozen soil samples. Essentially, the increase of 3D stress parameters accelerates the damage of soil particle and ice lens structures in horizontally layered and the growth of micro-crack of frozen soil, thereby reducing the transverse shear resistance of frozen soil samples.
This paper aims to comprehensively analyze the influence of the principal stress angle rotation and intermediate principal stress on loess's strength and deformation characteristics. A hollow cylinder torsional shear apparatus was utilized to conduct tests on remolded samples under both normal and frozen conditions to investigate the mechanical properties and deformation behavior of loess under complex stress conditions. The results indicate significant differences in the internal changes of soil particles, unfrozen water, and relative positions in soil samples under normal and frozen conditions, leading to noticeable variations in strength and strain development. In frozen state, loess experiences primarily compressive failure with a slow growth of cracks, while at normal temperature, it predominantly exhibits shear failure. With the increase in the principal stress angle, the deformation patterns of the soil samples under different conditions become essentially consistent, gradually transitioning from compression to extension, accompanied by a reduction in axial strength. The gradual increase in the principal stress axis angle (alpha) reduces the strength of the generalized shear stress and shear strain curves. Under an increasing alpha, frozen soil exhibits strain-hardening characteristics, with the maximum shear strength occurring at alpha = 45 degrees. The intermediate principal stress coefficient (b) also significantly impacts the strength of frozen soil, with an increasing b resulting in a gradual decrease in generalized shear stress strength. This study provides a reference for comprehensively exploring the mechanical properties of soil under traffic load and a reliable theoretical basis for the design and maintenance of roadbeds.