Underground structures may be buried in liquefiable sites, which can cause complex seismic response mechanisms depending on the extent and location of the liquefiable soil layer. This study investigates the seismic response of multi-story underground structures in sites with varying distributions of liquified soil employing an advanced three-dimensional nonlinear finite element model. The results indicate that the extent and location of liquefied soil layers affect the seismic response characteristics of underground structures and the distribution of their damage. When the lower story of the subway station is buried in liquefied interlayer site, the structure experiences the most serious damage. When the structure is located within a liquefiable interlayer site, the earthquake ground motion will induce greater inter-story deformation in the structure, resulting in larger structural residual displacement. When all or part of the underground structure is buried in the liquefiable soil layer, the structural failure mode should be assessed to ensure that the underground rail transit can quickly restore functionality after an earthquake. Meanwhile, permeability effects of liquefiable soil have a significant impact on the dynamic response of subway station in the liquefiable site.
A utility tunnel is an infrastructure that consolidates multiple municipal pipeline systems into a shared underground passage. As long linear structures inevitably cross different soils, this paper aims to accurately assess the seismic damage to a shallow-buried utility tunnel in a non-homogeneous zone by employing a viscous-spring artificial boundary and deriving the corresponding nodal force equations. The three-dimensional model of the utility tunnel-soil system is established using finite element software, and a plug-in is developed to simulate the three-dimensional oblique incidence of SV waves with a horizontal non-homogeneous field. In this study, the maximum interstory displacement angle of the utility tunnel is used as the damage indicator. Analysis of structural vulnerability based on IDA method using PGA as an indicator of seismic wave intensity, which considers the angle of oblique incidence of SV waves, the type of seismic waves, and the influence of the nonhomogeneous field on the seismic performance of the utility tunnel. The results indicate that the failure probability of the utility tunnel in different soil types increases with the incident angle and PGA. Additionally, the failure probability under the pulse wave is higher than that under the non-pulse wave; Particular attention is given to the states of severe damage (LS) and collapse (CP), particularly when the angle of incidence is 30 degrees and the PGA exceeds 0.6g, conditions under which the probability of failure is higher. Additionally, the failure probability of the non-homogeneous zone is greater than that of sand and clay; the maximum interlayer displacement angle increases with the incident angle, accompanied by greater PGA dispersion, indicating the seismic wave intensity. The maximum inter-layer displacement angle increases with the incident angle, and the dispersion of the seismic wave intensity indicator (PGA) becomes greater. This paper proposes vulnerability curves for different working conditions, which can serve as a reference for the seismic design of underground structures.
Friction characteristics are critical mechanical properties of clay, playing a pivotal role in the structural stability of cohesive soils. In this study, molecular dynamics simulations were employed to investigate the shear behavior of undrained montmorillonite (MMT) nanopores with varying surface charges and interlayer cations (Na+, K+, Ca2+), subjected to different normal loads and sliding velocities. Consistent with previous findings, our results confirm that shear stress increases with normal load. However, the normal load-shear stress curves reveal two distinct linear regions, indicating segmented friction behavior. Remarkably, the friction coefficient declines sharply beyond a critical pressure point, ranging from 5 to 7.5 GPa, while cohesion follows an inverse trend. The elevated friction coefficient at lower pressures is attributed to the enhanced formation of hydrogen bonds and concomitant changes in density distribution. Furthermore, shear strength was observed to increase with sliding velocities, normal loads, and surface charges, with Na-MMT exhibiting superior shear strength compared to KMMT and Ca-MMT. Interestingly, the friction coefficient shows a slight decrease with increasing surface charge, while ion type exerts a minimal effect. In contrast, cohesion is predominantly influenced by surface charge and remains largely unaffected by ion type, except under extreme pressures and velocities.
In seismic regions, many underground structures are inevitably partially embedded in liquefiable sites, which may cause complex seismic response mechanisms due to the varying distribution of liquefiable soil layers. This study investigates dynamic interaction between underground structures and liquefiable soils employing three-dimensional nonlinear finite element models. The seismic response of both standard and connection sections of the subway station-tunnel of underground structures in liquefiable sites is evaluated to reveal the seismic response patterns of the soil-structure system under different liquefiable soil distribution forms. The results revealed that compared to homogeneous liquefiable sites, liquefiable interlayer sites can cause greater seismic damage to underground structures, potentially leading to failure along the entire length of the subway station. Therefore, the post-earthquake failure modes of the structure and site should be comprehensively considered based on the site layers distribution characteristics.
Rock masses are often exposed to dynamic loads such as earthquakes and mechanical disturbances in practical engineering scenarios. The existence of underground caverns and weak geological structures like columnar jointed rock masses (CJRMs) and interlayer shear weakness zones (ISWZs) with inferior mechanical properties, significantly undermines the overall structural stability. To tackle the dynamic loading issues in the process of constructing subterranean caverns, a programmable modeling approach was utilized to reconstruct a large-scale underground cavern model incorporating ISWZs and columnar joints (CJs). By conducting dynamic simulations with varying load orientations, the analyses focused on the failure patterns, deformation characteristics, and acoustic emission activity within the caverns. Results revealed that the failure modes of the underground caverns under dynamic loading were predominantly tensile failures. Under X-direction loading, the failed elements were mainly distributed parallel to the CJs, while under Y-direction loading, they were distributed parallel to the transverse weak structural planes. Furthermore, the dynamic stability of the overall structure varied with the number of caverns. The dual-cavern model demonstrated the highest stability under X-direction loading, while the single-cavern model was the least stable. Under Y-direction loading, the cavern stability increased with the number of caverns. Importantly, different weak structures affected the dynamic response of caverns in different ways; the CJRMs were the primary contributors to structural failure, while ISWZs could mitigate the rock mass failure induced by CJs. The findings could offer valuable insights for the dynamic stability analysis of caverns containing CJRMs and ISWZs. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
The connection between subway stations and tunnels in subway systems is a critical consideration in the design of underground transportation systems. Expansion joints may be introduced between the station and tunnel to reduce the stress and deformation transmitted to the structure and mitigate the potential structural damage. However, adverse conditions such as large deformations in liquefiable sites and extreme earthquakes can severely impact the integrity of this connection. This study employs three-dimensional finite element numerical models of dynamic soil-structure interaction in liquefiable sites to investigate the seismic response of the subway station-tunnel connection structure under different distributions of liquefied soil layers and considering various structural connection methods. The results demonstrated that subway station-tunnel structure placed in liquefied interlayer sites experiences greater seismic damage compared to structures with their upper parts embedded in homogeneous liquefiable sites. In addition, using expansion joints between the station and tunnel can indeed reduce the seismic stresses and deformations transmitted to the structure, which can mitigate the extent and severity of its damage. However, the expansion joint can lead to misalignment between the subway station and the tunnel. The findings provide theoretical references for seismic design and disaster mitigation measures for subway structures in liquefiable sites.
Liquefaction behaviors of sand deposits with impervious stratum are quite different from that of homogeneous geological conditions. However, the micro- liquefaction behaviors of the interlayered deposits have been infrequently documented. This study introduces a novel experimental methodology aimed at examining the influence of silt interlayer on the liquefaction mechanisms of sand deposits from both macro and micro perspectives. In the experiments, the Excess Pore Water Pressure (EPWP) was analyzed in conjunction with recorded micro liquefaction images. The migration mechanism of fine sand particles beneath the silt interlayer was revealed. The existence of low permeability interlayer leads to prolonged retention of EPWP beneath the silt interlayer. Substantially, the water film on the base of the interlayer is demonstrated to be the mixture of pore water and silt particles flowing with high velocity under seismic motions, thereby resulting in significant strain localization. An agminated zone of loose fine sand particles is usually generated beneath the silt interlayer after the dissipation of EPWP.
The seismic damage of underground structures has been extensively investigated, and it has been demonstrated that underground structures located at weak interlayer sites are more prone to damage. In this study, a two-story two-span rectangular frame subway station structure is analyzed. A two-dimensional soil-underground structure model is developed using the large-scale finite element analysis software ABAQUS. The equivalent linear soil-underground structure dynamic time-history analysis method is employed to examine the seismic response of underground structures at weak interlayer sites. Variations in the thickness and shear wave velocity of the weak interlayer soil are analyzed. The seismic mitigation effects of split columns and prototype columns in underground structures at weak interlayer sites are systematically compared. The findings indicate that the relative displacement and internal force of key structural components significantly increase when the weak interlayer intersects the underground structure. Furthermore, as the thickness of the interlayer increases, the displacement and internal force also escalate. When the thickness of the weak interlayer remains constant and the shear wave velocity decreases, the relative displacement and internal force of the key structural components gradually intensify. Replacing ordinary columns with split columns substantially reduces the internal force of the middle column, providing an effective seismic mitigation measure for underground structures.
When an underground structure passes through a liquefiable soil layer, the soil liquefaction may pose a significant threat to the structure. A centrifuge shaking table test was performed to research the seismic response of underground structures in liquefiable interlayer sites, and a valid numerical model was obtained through simulation model test. Finally, the calibrated numerical model was used to perform further research on the influence of various distribution characteristics of liquefiable interlayers on the seismic reaction of underground structures. The key findings are as follows. The structure faces the most unfavorable condition once a liquefiable layer is located in the middle of the underground structure. When a liquefiable layer exists in the middle of the structure, the seismic reactions of both the underground structure and model site will increase with the rise of the thickness of the liquefiable interlayer. The inter-story drift of the structure in the non-liquefiable site is much smaller than that in the liquefiable interlayer site. The inter-story drift of the structure is not only associated with the site displacement and the soil-structure stiffness ratio but also closely associated with the slippage of the soil-structure contact interface under the condition of large deformation of the site.
Layered structure in sand deposits is prevalent not only in reclaimed soils but also in natural alluvial soils. Liquefaction tests by a self-developed impact load system were carried out to investigate the excess pore water pressure (EPWP) generation and related liquefaction mechanism in layered sands, considering cases of uniform, two layered and interlayered sand columns respectively. Results show that the EPWP of saturated sands under impact loading presents two phases: transient response and steady-state response. For sands without interlayer, lower-permeability soil layer determines the rate of EPWP dissipation and lower permeability can result in smaller value of steady pore pressure but longer duration of that. For interlayered sands, presence of less permeable interlayer will prolong the total duration of pore pressure dissipation, and there is a significant high pore pressure sustained period during the dissipation stage of pore pressure, which is unfavorable for the liquefaction. Also, the presence of a less permeable interlayer within the sand deposit can lead to formation of water film underneath the interlayer. Besides, theoretical analysis of EPWP and water film under the same conditions are made, and it shows a good consistency between theoretical and test results, which verifies the rationality and reference value of the test analysis in this paper.